PHASE 2 REPORT:

EXAMINATION OF THE LOCAL TELECOMMUNICATIONS NETWORKS AND RELATED POLICIES AND PRACTICES OF AT\&T CALIFORNIA AND FRONTIER CALIFORNIA

Study conducted pursuant to the California PUC Service Quality Rulemaking 11-12-001, Decision 13-02-023, and Decision 15-08-041

NOTICE: THE ENTIRETY OF THIS REPORT IS TO BE TREATED AS CONFIDENTIAL AND PROPRIETARY. NO PART OF THIS INFORMATION IS FOR DISTRIBUTION OUTSIDE OF CPUC PER GO 66, PU CODE §583, D.16-08-024 AND COMPANY ATTESTATIONS

June 17, 2021

| PREFACE

In December 2011, the California Public Utilities Commission (CPUC) opened Rulemaking (R.) 11-12-001 to (a) review telecommunications carrier performance in meeting the GO 133 service quality standards and measures in 2010; (b) assess whether the existing GO 133 service quality standards and measures meet the goals of the Commission to adequately protect California customers and the public interest; (c) determine whether the existing GO 133 standards are relevant to the current regulatory environment and market; and (d) determine whether there is a need to establish a penalty mechanism for substandard service quality performance. The Commission's Communications Division was directed to oversee an examination of the network facilities of AT\&T California and (then) Verizon California, the state's two principal local wireline telecommunications utilities, and to engage an independent consultant to perform this examination under a contract to be managed by Commission staff.

Economics and Technology, Inc. ("ETI") was selected to perform this study, and we completed our report in April 2019. In January 2020, CD issued a "Secondary RFP to obtain responses from firms qualified to conduct an examination of the telecommunications networks and related policies and practices of AT\&T California and Frontier Communications California for the period from 2018 to 2019." ETI submitted a proposal in response to this Secondary RFP, and was selected by CD to undertake this additional "Phase 2" study. This report provides the results of this additional work. ETI did not, and was not required to, undertake to audit or otherwise verify the accuracy or completeness of the data that was provided to us. Various inconsistencies and gaps in the data were identified, and we used our best efforts to resolve them. Where such efforts were not successful, we noted the problems and utilized the data as best we could.

The project was conducted under the direction of Dr. Lee L. Selwyn, President of ETI, with a team consisting of ETI staff members Colin B. Weir, Vice President, and Andrew J. Kearns, Senior Economic Consultant. Our work has greatly benefitted from the extensive input and assistance that we received from the Communications Division Staff, including in particular Kim Hua, who served as Project Manager with respect to the Phase 2 project, and Louise E. Fischer, who had served as Project Manager for the Phase 1 study. We we gratefully appreciate and acknowledge the invaluable assistance they and other CD Staff provided to us. We also appreciate the cooperation that we received from both carriers in the course of this work.

Boston, Massachusetts

June 2021

NOTICE

Nearly all of the information contained in the various AT\&T California and Frontier California (including former Verizon California) data files, responses to data requests, and other source material ("ILEC Data") that has been provided to ETI in the course of this examination has been identified by the carriers and/or by the Commission as CONFIDENTIAL AND PROPRIETARY AND SUBJECT TO CPUC GENERAL ORDER 66, PUB. UTIL. CODE SECTION 583 AND D.16-08-024, REGARDLESS OF WHETHER OR NOT A DOCUMENT OR FILE HAS BEEN EXPRESSLY LABELED AS CONFIDENTIAL. Under the terms of our Agreement no. 19NS0853 including the incorporated Confidentiality of Data/Nondisclosure Agreement (Section 9. Exhibit E), all of the contents of this report are, by default, being treated as CONFIDENTIAL AND PROPRIETARY ILEC DATA whether or not expressly identified as such.

In Decision (D.) 20-12-021, the Commission determined that substantial portions of our Phase 1 Report that had tentatively been treated as confidential should be made available for public inspection. It is our understanding that the Communications Division anticipates that a public, redacted version of this report will be released in due course, once determinations have been made by CD Staff and counsel as to which portions of its contents may be made publicly available. However, for the present, THE ENTIRETY OF THIS REPORT IS TO BE TREATED AS CONFIDENTIAL AND PROPRIETARY AND SUBJECT TO CPUC GENERAL ORDER 66, PUB. UTIL. CODE SECTION 583 AND D.16-08-024.

TABLE OF CONTENTS

1: EXECUTIVE SUMMARY AND OVERVIEW OF THIS REPORT 1
Introduction 2
Scope of this Phase 2 Study 2
Organization of this Phase 2 Report 3
Organization of this Chapter 4
Key Conclusions and Recommendations resulting from this study 4
Managing the transition from legacy to current technology services 4
Conclusions 5
Recommendations 8
Chapter Summaries 10
Principal Phase 2 Observations and Takeaways 46
2: INTRODUCTION AND BACKGROUND FOR THIS STUDY - not updated in Phase 2
3: CALIFORNIA ILEC NETWORK OVERVIEW - not updated in Phase 2
4: ILEC RESPONSES TO SERVICE OUTAGES: PHASE 2 UPDATE 55
Introduction: Organization of this Chapter 58
Overview of the results of the Phase 2 service quality analysis 58
Data collection and reporting pursuant to General Order 133-C and subsequent 133-D 60
Trouble Reports, in general 63
The "raw" Trouble Report data 68
The continuing collapse of the California ILEC market environment 68
Identifying long-term trends from actual month-to-month experience 73

Tables and Figures

Table 4.1: \quad Quantities of Trouble Reports and Actual Out-of-service Conditions:
AT\&T - January 2010 through December 2019
Frontier - April 2016 through December 2019
Table 4.2: \quad Quantities of Trouble Reports and Out-of-Service Conditions Adjusted to Exclude Sundays and Holidays per GO 133-C/D:

AT\&T - January 2010 through December 2019
Frontier - April 2016 through December 2019
Table 4.3: Most Common AT\&T Cause Codes and the Number of Occurrences 2010-2019

Figure 4.1: California ILECs saw a precipitous drop in demand for circuit-switched legacy voice access lines over the 2010-2019 period, only a portion of which were replaced by ILEC-provided VoIP services.

Figure 4.2: A substantial share of California ILEC residential line losses was the result of customer migrations to cable MSOs and other ILEC competitors.

Figure 4.3: ILEC business customers also migrated to competing service providers that offer SIP trunking, virtual PBX, and other VoIP services.

Figure 4.4. ILECs and CLECs have experienced switched access line losses over the 2008-2018 period, but ILEC losses have been far greater.

Figure 4.5. The vast majority of the growth in VoIP services from 2008 to 2018 has been in the non-ILEC sector.
Figure 4.6: Perhaps the largest source of the shift in demand away from ILEC and other wireline voice services in California has been the mushrooming growth in demand for wireless. 72
Figure 4.7. Sample chart (Average duration of AT\&T California service outages, 2010- 2019) providing individual trend lines calculated for 2010-2017 (Phase 1), 2018-2019 (Phase 2) and for the full 2010-2019 period. 73
4A: SERVICE QUALITY ANALYSIS UPDATE: AT\&T CALIFORNIA 75
Phase 2 2018-2019 Update to the AT\&T California Service Quality analysis 82
Access line demand continues to plummet 82
Trouble Reports and POTS Lines in Service - a more granular perspective 85
AT\&T Service Quality performance 103
Focus upon 2018-2019 results 103
Out-of-Service conditions overall 103
Out-of-service conditions cleared within 24 hours 110
AT\&T has continued to increase rates for its legacy services while service quality continues to be degraded 134
Effects of geographic and other wire center attributes upon performance results 136
Fiber optic upgraded wire centers 153
Wire Center Size 159
Access Line Loss 165
Urban/Suburban/Rural 173
ILEC Organizational Assignment 179
Summary 185

Tables and Figures

Table 4A.1: \quad AT\&T California Drop-off in POTS Demand at Wire Centers of Varying Sizes January 2010 - December 201983

Table 4A.2: AT\&T California Out-of-Service Over 24 Hours' Duration per 100 Pots Lines in Service - 20 Poorest Performing and 10 Best Performing Wire Centers 2016-2019

Table 4A.3: AT\&T California Average Out-of-Service Duration - 20 Poorest
Performing and 10 Best Performing Wire Centers 2016-2019 87

Table 4A.4: AT\&T California Percent Out-of-Service Cleared Within 24 Hours - 20
Poorest Performing and 10 Best Performing Wire Centers 2016-2019 88

Table 4A.5: AT\&T California Days Required to Clear 90\% of Out-of-Service Conditions

- 20 Poorest Performing and 10 Best Performing Wire Centers 2016-2019
Table 4A.6: AT\&T California Trouble Report and Out-of-Service Data for 2016-2019 90
Table 4A.7: AT\&T California Quantities of Actual and Adjusted ("CPUC") Out-of- Service Conditions, January 2010 Through December 2019 110
Table 4A.8(a) AT\&T California Wire Center Performance Trends Over the Period Q2010-4Q2019 114
Table 4A.8(b) AT\&T California Wire Center Performance Trends Over the Period 1Q2018-4Q2019 122
Table 4A.9: AT\&T California Percentages of Actual and Adjusted ("CPUC") Out-of- Service Conditions Cleared Within 24 Hours and Days Required to Clear 90\% 130
Table 4A.10: AT\&T California Basic Residential (POTS) Access Line Service Rate Increase History 2006-2020 135
Table 4A.11: AT\&T California Wire Center Attribute Dimensions and Categories 137
Table 4A.12: AT\&T California Wire Center Attribute Classifications 138
Table 4A.13: Summary of AT\&T Attribute Dimension Graphs 153
Table 4A.14: AT\&T California Classifications of Wire Centers by POTS Lines in Service as of January 2010 159

Table 4A.15: AT\&T California Classifications of Wire Centers by POTS Line Loss Percentage January 2010 Through December 2019

Table 4A.16: AT\&T California Field Operations West (AFO) Districts Total Wire Centers and Wire Centers Upgraded with Fiber to Support Broadband Services as of December 2019

Figure 4A.1: \quad The decrease in the number of AT\&T California out-of-service Incidents has roughly corresponded with the drop-off in access lines in service over the 2010-2019 period

Figure 4A.2: Over the 2010-2017 period, the trend of AT\&T California out-of-service incidents per 100 access lines (actual) had been increasing; for 2018-2019, that trend experienced a further increase.

Figure 4A.3: The rate of increase in the average duration of AT\&T California out-ofservice incidents lasting more than one hour (actual) grew even larger in the 2018-2019 period

Figure 4A.4: The average duration of all AT\&T California out-of-service incidents (actual) saw a significant jump during the 2018-2019 Phase 2 study period.

Figure 4A.5: The average duration of all AT\&T California out-of-service incidents over 24 hours (actual) increased further over the 2018-2019 Phase 2 study period. 107

Figure 4A.6: The average duration of all AT\&T California out-of-service incidents (adjusted) saw a significant jump during the 2018-2019 Phase 2 period.

Figure 4A.7: The average duration of all AT\&T California out-of-service incidents over 24 hours (adjusted) increased further over the 2018-2019 Phase 2 period.

Figure 4A. $8 \quad$ 2018-2019 saw a 39% increase in the rate of AT\&T California out-of-service conditions over 24 hours (actual), as compared with about 12% over the 2010-2017 Phase 1 study period.

Figure 4A.9: AT\&T California had not come even close to achieving the GO 133-CD §3.4(c) goal of 90% of all OOS cleared within 24 hours (actual) during the Phase 1 study period, and that metric saw a significant degradation in 20182019.

Figure 4A.10: The percentage of all AT\&T California OOS cleared within 24 hours (adjusted) has consistently fallen far short of meeting the GO 133-C/D §3.4(c) 90\% cleared within 24 hours standard, and got a lot lower in 2018-2019.

Figure 4A.11: The number of days required to clear 90% of AT\&T California out-ofservice incidents (actual) increased considerably in 2018-2019.

Figure 4A.12: The number of days required to clear 90% of AT\&T California out-ofservice incidents (adjusted) also increased in 2018-2019.

Figure 4A.13: Wire centers that had not been upgraded with fiber optic facilities experienced further degradation in the number of out-of-service incidents per 100 access lines (actual) in 2018-2019.

Figure 4A.14: The average duration for OOS over 24 hours (actual) in wire centers that had not been upgraded with fiber optic facilities grew even longer in 2018-2019. 136

Figure 4A.15: The percentage of all OOS cleared within 24 hours (actual) dropped considerably both in fiber and non-fiber wire centers in 2018-2019.

Figure 4A.16: It took AT\&T California more days to clear 90% of outages (actual) both in fiber and non-fiber wire centers in 2018-2019.

Figure 4A.17: The largest wire centers generally experienced the lowest out-of-service rate per 100 lines in service (actual), but the outage rate increased for all wire center size categories in 2018-2019.

Figure 4A.18: The largest wire centers generally exhibited the shortest average duration of OOS over 24 hours (actual); the two largest size categories saw some improvement in 2018-2019, while the two smallest size categories experienced even longer durations than in the Phase 1 study period.

Figure 4A.19: The largest wire centers generally exhibited the highest percentage of all OOS cleared within 24 hours (actual), but all five size categories saw significant decreases in this metric in 2018-2019.

Figure 4A.20: The largest wire centers generally required the fewest number of days to clear 90% of all out-of-service incidents (actual), but the days -to-clear metric increased across all size categories in 2018-2019.

Figure 4A.21: Companywide, AT\&T California experienced a net loss of $\%$ of its POTS access lines in service over the 2010-2019 period.

Figure 4A.22: AT\&T California wire centers with the fewest POTS line losses have experienced the greatest increase in OOS per 100 lines in service (actual), a disparity that became even greater in 2018-2019.

Figure 4A.23: AT\&T California wire centers with the largest POTS line losses had been experiencing the shortest average durations of OOS over 24 hours (actual) in the Phase 1 study period, but durations in this category saw a huge spike in the 2018-2019 period.

Figure 4A.24: AT\&T California wire centers with the largest POTS line losses are experiencing the highest percentages of all OOS cleared within 24 hours (actual), but this metric worsened for all except the smallest line loss category in 2018-2019.

Figure 4A.25: AT\&T California wire centers with the largest POTS lines losses requires the fewest number of days to clear 90% of all OOS (actual), but days-toclear 90% increased for all line loss categories in 2018-2019.

Figure 4A.26: AT\&T California. OOS per 100 lines in service (actual) had been increasing except in the highest density categories, and escalated further in all but one density category in 2018-2019.

Figure 4A.27: AT\&T California. average duration of OOS over 24 hours (actual) had increased the most in areas with the lowest population density, and saw further increases in 2018-2019 across all density categories

Figure 4A.28: AT\&T California. pct of all OOS cleared within 24 hours (actual) had remained stable except in areas with the highest population density, but saw decreases in all five density categories in 2018-2019.

Figure 4A.29: The number of days required for AT\&T California. to clear 90% of all OOS (actual) has increased in all five density categories over the entire 2010-2019 period.

Figure 4A.30: AT\&T California. OOS per 100 lines in service (actual) varied inversely with the type of area being supported by each AFO district - lowest in the largest metro areas, but saw large increases in the San Gabriel and Southern California districts.

Figure 4A.31: The average duration of OOS over 24 hours (actual) is longest - and had been increasing - in AT\&T California AFO districts covering non-metro and rural areas, and also saw large increases in the San Gabriel and Southern California districts.

Figure 4A.32: The percentages of OOS to be cleared within 24 hours (actual) decreased in all five AFO districts in 201-2019.
Figure 4A.33: The number of days required to clear 90% of all OOS (actual) increased in all five AFO districts in 2018-2019. 184
4F: SERVICE QUALITY ANALYSIS UPDATE: FRONTIER CALIFORNIA 187
Introduction 195
Frontier has been hemorrhaging customers almost from the date of the acquisition 195
Trouble Reports and POTS Lines in Service - a more granular perspective 199
Frontier Service Quality Performance: 2018-2019 Update 208
Effect of persistent access line losses on the volume of customer trouble reports 208
Out-of-service conditions 210
Duration of out-of-service conditions 210
Out-of-service conditions cleared within 24 hours 214
Regression analyses covering all Frontier wire centers over time using a "Fixed Effects Panel Model." 227
Effects of geographic and other wire center attributes upon performance results 236
Wire Centers that had been upgraded to FTTP 242
Wire Center Size 249
Access Line Loss 254
Urban/Suburban/Rural 260
ILEC Organizational Assignment. 265
Summary 271

Tables and Figures

Table 4F.1: \quad Frontier California Drop-Off In POTS Demand At Wire Centers Of Varying Sizes - April 2016 - December 2019.
Table 4F.2: Frontier California Percent Out-of-Service Over 24 Hours Durations Per 100 POTS Lines in Service -- 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017. 200
Table 4F.3: Frontier California Average Out-of-Service Duration -- 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017. 201
Table 4F.4: Frontier California Percent Out-of-Service Cleared Within 24 Hours -- 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017. 202
Table 4F.5: Frontier California Days Required to Clear 90\% of Out-of-Service Conditions - 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017. 203
Table 4F.6: Frontier California Trouble Report Out-of-Service Data for 2Q2016- 4Q2017. 204
Table 4F.7: Percentages Of Actual And Adjusted ("CPUC") Out-of-Service Conditions Cleared Within 24 Hours And Days Required To Clear 90\%. 214
Table 4F.8(a): Frontier California Reporting Unit Performance Trends for the period 2Q2016-4Q2019. 220
Table 4F.8(b): Frontier California Reporting Unit Performance Trends for the period 2Q2018-4Q2019. 223
Table 4F.9: Frontier California Fixed Effects Regression Results: Dependent Variable - Percent Cleared within 24 hours (Actual) 229
Table 4F.10: Frontier California Fixed Effects Regression Results: Dependent Variable - Days Required to Clear 90\% (Actual) 229
Table 4F.11: Frontier California Fixed Effects Regression Results: Dependent Variable - Out of Service per 100 Access Lines-Monthly 230
Table 4F.12: Frontier California Fixed Effects Regression Results:Dependent Variable -Average Out-of-Service Duration 230
Table 4F.13: Frontier California Wire Center Attribute Dimensions and Categories. 237
Table 4F.14: Frontier California Wire Center Attribute Classifications 238
Table 4F.15: Summary of Frontier Attribute Dimensions Graphs 242
$\begin{array}{ll}\text { Table 4F.16: } & \begin{array}{l}\text { Frontier California Classifications of Wire Centers and Reporting } \\ \text { UnitsWith and Without FTTP Upgrades as of April } 2016\end{array} 243\end{array}$
Table 4F.17: Frontier California Classifications of Wire Centers and Reporting Units by POTS Lines in Service.

Table 4F.18: Frontier California Classifications of Wire Centers by POTS Line Loss Percentage.

Table 4F.19: Frontier California Operating Areas 265
Figure 4F.1: Frontier California has lost more than half of its POTS Access Lines in Service since taking over the company in 2016.

Figure 4F.2: The number of Out-Of-Service incidents has fallen by a smaller percentage than the drop-off in POTS access lines over the 2016-2019 period of Frontier ownership.

Figure 4F.3: There has been a steady upward trend in the number of out-of-service incidents per 100 access lines in service under Frontier ownership, and a further increase over the 2018-2019 Phase 2 study period.

Figure 4F.4: The number of out-of-service incidents exceeding 24 hours per 100 access lines was initially decreasing under Frontier ownership, but has now been on the rise over the 2018-2019 period.

Figure 4F.5: The average duration (actual) of all out-of-service conditions had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.

Figure 4F.6: The average duration (actual) of out-of-service conditions greater than one hour had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.

Figure 4F.7: Average actual (actual) duration of all out-of-service incidents in excess of 24 hours in duration has been trending upward over the 2018-2019 period.

Figure 4F.8: Average duration of all out-of-service incidents adjusted for Sundays and holidays had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.

Figure 4F.9: Average duration of all out-of-service incidents in excess of 24 hours adjusted for Sundays and holidays has been trending upward over the 2018-2019 period.

Figure 4F.10: Percentage of all out-of-service conditions cleared within the first 24 hours (actual) had been improving during the first two years of Frontier ownership, but that trend has sharply decreased over the 2018-2019 period.

Figure 4F.11: Percentage of all out-of-service conditions cleared within the first 24 hours (adjusted for Sundays and holidays) had been improving during the first two years of Frontier ownership, but that trend has sharply decreased over the 2018-2019 period.

Figure 4F.12: Days required to clear 90% of all out-of-service conditions (actual) had been dropping during the first two years of Frontier ownership, but that trend has been getting longer over the 2018-2019 period.

Figure 4F.13: Days required to clear 90% of all out-of-service conditions (adjusted for Sundays and holidays) had been dropping during the first two years of Frontier ownership, but that trend has been getting longer over the 2018-2019 period.

Figure 4F.3P: Panel Model Box Diagram: Out-of-Service per 100 Access Lines - Monthly 232
Figure 4F.5P: Panel Model Box Diagram: Average Out-of-Service Duration (Actual) 233
Figure 4F.10P: Panel Model Box Diagram: Percent Out-of-Service Cleared Within 24 Hours (Actual)

Figure 4F.12P: Panel Model Box Diagram: Days Requires to Clear 90\% of Out-of-Service Conditions (Actual)

Figure 4F.14: There have been fewer out-of-service conditions per 100 access lines in wire centers with FTTP upgrades, but both categories have seen increases in OOS rates over the 2018-2019 period.

Figure 4F.15: \quad Service outages are shorter in wire centers that have received FTTP upgrades, but following some improvement in FTTP offices following Frontier's takeover, durations have been on the rise in both categories over the 2018-2019 period.

Figure 4F.16: FTTP-upgraded wire centers clear a higher percentage of out-of-service conditions within 24 hours, but following improvement in both categories following Frontier's takeover, the percent cleared within 24 hours has been falling in both categories over the 2018-2019 period.

Figure 4F.17: The number of days needed to clear 90% of service outages in shorter in FTTP-upgraded wire centers, but following improvement in both categories
following Frontier's takeover, the days needed to clear 90% has been increasing in both categories over the 2018-2019 period.

Figure 4F.18: The largest wire centers exhibit the fewest number of out-of-service conditions per 100 access lines, but wire centers in all size categories have seen increases in OOS rates over the 2018-2019 period.

Figure 4F.19: Service outages continued to have shorter durations in larger wire centers following Frontier's takeover, but wire centers in all size categories have taken longer to clear over the 2018-2019 period.

Figure 4F.20: The largest wire centers tended to clear a higher percentage of out-ofservice conditions within 24 hours, but following improvement in all size categories following Frontier's takeover, the percent cleared within 24 hours has been falling in all size categories over the 2018-2019 period.

Figure 4F.21: The number of days needed to clear 90% of service outages is shortest in the largest wire centers and had been improving in all but the two smallest size categories following the Frontier takeover, but has been increasing in all size categories over the 2018-2019 period.

Figure 4F.22: Wire centers that had experienced the greatest drop-off in demand for POTS services generally exhibited the fewest number of out-of-service conditions per 100 access lines, but that number has been increasing in all line loss categories over the 2018-2019 period.

Figure 4F.23: Service outages tended to be shortest in wire centers that had experienced the greatest drop-off in demand for POTS, but durations have been on the rise in all line loss categories over the 2018-2019 period.

Figure 4F.24: Access line drop-off rates appear to have had little effect upon the percentage of out-of-service conditions within 24 hours, but after gains in all five categories following Frontier's takeover in 2016, significant degradation in this metric has occurred in all loss categories over the 2018-2019 period.

Figure 4F.25: Access line drop-off rates appear to have had little effect upon the number of days needed to clear 90% of service outages, but after gains in all five categories following Frontier's takeover in 2016, significant degradation in this metric has occurred in all loss categories over the 2018-2019 period.

Figure 4F.26: Wire centers serving areas with the highest population density exhibit the fewest number of out-of-service conditions per 100 access lines under Frontier management, but wire centers in all density categories have seen increases in OOS rates over the 2018-2019 period.

Figure 4F.27: Service outages tend to be shortest in wire centers serving the more densely populated areas, but wire centers in all density categories have seen increases in OOS duration over the 2018-2019 period.

Figure 4F.28: Wire centers serving the more densely populated areas tended to clear a higher percentage of out-of-service conditions within 24 hours, but wire centers n all density categories have seen reductions in this metric over the 2018-2019 period.

Figure 4F.29: The number of days needed to clear 90% of service outages is shortest for wire centers serving more densely populated areas, but wire centers in all density categories have seen increases in days-to-clear over the 2018-2019 period.

Figure 4F.30: Frontier's Desert and Northern Operating Areas, which have responsibility for wire centers serving the least densely populated areas, exhibit the highest number of out-of-service conditions per 100 access lines.
$\begin{array}{ll}\text { Figure 4F.31: } & \begin{array}{l}\text { Service outages tend to be shorter in those Operating Areas serving more } \\ \text { densely populated areas. }\end{array} \\ 268\end{array}$
Figure 4F.32: Operating Areas serving the more densely populated areas have the best record of clearing a high percentage of out-of-service conditions within 24 hours, but these clearance rates experienced significant increases in all six Operating Areas in 2018-2019.

Figure 4F.33: The number of days needed to clear 90% of service outages had been improving in all except the Desert Operating Area following the Frontier takeover, but in 2018-2019 all Operating Areas saw significant escalations in outage durations.

5: INFRASTRUCTURE POLICIES AND PROCEDURES: AT\&T - not updated in Phase 2

6: INFRASTRUCTURE POLICIES AND PROCEDURES: FRONTIER - not updated in Phase 2

7: AT\&T CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE

Introduction 278
AT\&T California remains the underlying provider of most retail local network services being offered under the AT\&T California or other AT\&T affiliate brand names 279
The AT\&T California component of parent AT\&T Inc. revenues have been steadily diminishing, as has the share of the overall AT\&T capital budget that is being allocated to the California ILEC. 280
AT\&T California's response to the rapidly eroding demand for legacy POTS services has not been to cut prices to retard such "cord-cutting," but instead to implement large rate increases so as to "harvest" as much revenue from the remaining POTS customers as long as they continue to retain their service. 284
AT\&T California has continued its practice of disinvesting in its California local network infrastructure. 285
Inter-affiliate transactions at non-arm's length transfer prices also contribute to the parent company's pattern of disinvestment in AT\&T California operations. 290
Persistent disinvestment, extensive affiliate transactions at self-serving transfer prices, extraordinarily large rate increases, and deteriorating service quality all point to "harvesting" as AT\&T California's overarching strategy for its legacy services and customers. 293
AT\&T California investment in wireline circuit-switched voice services has continued to diminish over the 2018-2019 period. 293
Investments at individual wire centers 297
GO 133-D §9.7 Alternative Investments 325
Summary and conclusions 399

Tables

Table 7.1: \quad AT\&T California and AT\&T Inc. Total Operating Revenues 2010-2019 281
Table 7.2: AT\&T California and AT\&T Inc. Legacy Switched Access Lines in Service 2010-2019

Table 7.3: AT\&T California Operating Revenues Decreased, but by Far less than the Decrease In Legacy Switched Access Lines 2010-2019

Table 7.4: AT\&T California Legacy Switched Access Line Revenues Have Decreased by a Greater Percentage than for Total Operating Revenues Generally,

$$
\begin{aligned}
& \text { but Still by Far less Than the Decrease in Legacy Switched Access Lines } \\
& 2010-2019
\end{aligned}
$$

Table 7.5: AT\&T California Net Income and Dividend Payments to Parent AT\&T Inc. 2010-2019

Table 7.6 AT\&T California Pattern of Investment 2010-2019 287
Table 7.6A: AT\&T California Pattern of Investment 2010-2019 Approximate Pro Forma Adjustments as if USOA Accounting Rules Were Still Being Used for 2018 and 2019

Table 7.7 AT\&T California Affiliate Transactions with Other Units of AT\&T Inc. 2010-2019

Table 7.8: AT\&T California Gross Plant Additions 2010-2019 296
Table 7.9: AT\&T California Digital Electronic Switching Gross Additions and Retirements 2010-2019
$\begin{array}{ll}\text { Table 7.10: } & \text { AT\&T California Circuit Equipment Gross Additions and } \\ \text { Retirements 2010-2019 }\end{array}$
Table 7.11: AT\&T California Gross Plant Additions 2010-2019 308
Table 7.12: \quad AT\&T California Gross Additions per Access Line in Service 30 Wire Centers with the Lowest Per-Line Expenditures
$\begin{array}{ll}\text { Table 7.13: } & \text { AT\&T California Gross Additions per Access Line in Service - } \\ & \text { 30 Wire Centers with the Highest Per-Line Expenditures }\end{array} 327$
Table 7.14: AT\&T California Gross Additions per Access Line in Service 330
Table 7.15: $\begin{aligned} & \text { AT\&T California Comparison among Plant Investment Categories } \\ & 2018-2019\end{aligned}$
Table 7.16: \quad AT\&T California Rehabilitation Expenditures by Wire Center 2018-2019 335
Table 7.17: AT\&T California Comparison of GO 133-D §9.7 "Alternative Proposed Investments" and Total Rehab Expenditures 2018-2019

Table 7.18: AT\&T California Comparison of GO 133-D §9.7 "Alternative Proposed Investments" and Total 2018-2019 Rehab Expenditures (Sorted by Other Rehab Expenditures -- Largest to Smallest)
Table 7.19: AT\&T California Service Quality Metrics in Wire Centers Receiving GO 133-D §9.7 "Alternative Investments" and Other Rehab Expenditures 2018-2019 (Sorted by Percent Cleared within 24 Hours) 385
8: FRONTIER CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE 401
A lot has happened to Frontier since our Phase 1 Report 404
Verizon California had been experiencing customer drop-offs for years preceding the Frontier acquisition. 413
Verizon California had been consistently disinvesting in its California local network infrastructure, and Frontier has been pursuing a similar strategy. 418
The focus of Frontier California's capital investments over the 2016-2019 period 422
Maintenance and rehabilitation expenses 2018-19 433
GO 133-D §9.7 Alternative Investments 437
Summary and conclusions 437

Tables and Figures

Table 8.1: Frontier Communications Corp.: Customer Counts by Service Category, 2016-2019404
Table 8.2: Verizon/Frontier California Average Legacy Switched Access Lines in Service, 2010-2019 414
Table 8.3: Verizon/Frontier Operating Revenues Have Decreased, but by Far Less thanthe Decrease in Legacy Switched Access Lines, 2010-2019415
Table 8.4: Verizon California (U-1002) Legacy Switched Access Line Revenues Have Decreased Roughly in Proportion to the Decrease in Legacy Switched Access Lines, 2011-2019 416
Table 8.5: Verizon/Frontier California Basic Residential (POTS) Access Line Service Rate Increase History, 2006-2020 417
Table 8.6: \quad Frontier California Pattern of Investment, 2016-2019 419
Table 8.7: Frontier California Affiliate Transactions with Other Frontier Units, 2016-2019 421
Table 8.8: \quad Frontier California Gross Plant Additions, 2016-2019 by Plant Account 423
Table 8.9: \quad Frontier California Distribution of Gross Plant Additions 2018-2019 424
Table 8.10: Frontier California Gross Plant Additions - 30 Wire Centers with Largest Spend, 2016-2019 425
Table 8.11: Frontier California Gross Plant Additions, 2016-2019 426
Table 8.12: \quad Frontier California Gross Plant Additions, 2016-2019 (sorted by highest to lowest wire center expenditure) 429
Table 8.13: \quad Frontier California Breakdown of Operating Expenses, 2018-2019 434
Table 8.14: Frontier California Outside Plant Maintenance Expenses, 2018-2019 435
Tzble 8.15: Frontier California Regulated and Non-Regulated Revenues and Expenses, 2018-2019 436
Figure 8.1: Frontier Communications Corp. Common Stock share prices, 5-year history.(Source: Google Finance, as of December 16, 2020) 405
Figure 8.2: Frontier's cumulative five-year total return in comparison to the five-yeartotal return for all S\&P 500 Index stocks and for all S\&P Telecommuni-cations Services Index stocks.406
Figure 8.3: Frontier has financed its succession of ILEC acquisitions primarily through the issuance of debt. 407
Figure 8.4: Frontier Communications Corp. Revenues, 2005-2019. 408
Figure 8.5: Frontier Communications Corp. Switched Access Lines in Service 2005-2019 409
Figure 8.6: Frontier corporate net earnings have plummeted in the years since the 2016 California, Texas and Florida acquisitions from Verizon. 411
Figure 8.7: Frontier's corporate debt service continued to increase while its operating revenues have plummeted. 413

9: ASSESSMENT OF SAFETY, REDUNDANCY AND RESILIENCY OF NETWORK(S): AT\&T - not updated in Phase 2
 10: ASSESSMENT OF SAFETY, REDUNDANCY AND RESILIENCY OF NETWORK(S): FRONTIER - not updated in Phase 2

11: ILEC SERVICE QUALITY AND COMMUNITY DEMOGRAPHICS 442
Introduction 447
Median household income, ILEC investment, and service quality 448
Investment 449
Frequency and restoration of service outages 475
AT\&T California 475
Frontier California 482
Racial characteristics of the population being served and service quality 489
Conclusion 502
Tables and Figures
Table 11.1: AT\&T California and Frontier California Wire Center Serving Area Median Household Income Categories 449
Table 11.2: AT\&T California Median Household Income and 2018-29 Gross Plant Additions 450
Table 11.3 AT\&T California Wire Center Serving Area Median Household Income Based on 2018 American Community Survey Data 451

Table 11.4 AT\&T California and Frontier California Weighted Average Median Household Income in Wire Center Serving Areas with and Without Broadband Service Upgrades Based on 2018 American Community Survey Data

Table 11.5: Frontier California Median Household Income and 2018-29 Gross Plant Additions

Table 11.6: Frontier California Weighted Average Median Household Income in Wire Center Serving Areas With and Without Broadband Service Upgrades Based on 2018 American Community Survey Data

Figure 11.1: AT\&T California Service Outages per 100 Access Lines per Month for the Five Median Household Income Quintiles, 2018-2019

Figure 11.2: AT\&T California Percent of Service Outages Restored Within 24 Hours for the Five Median Household Income Quintiles, 2018-2019

Figure 11.3: AT\&T California Average Duration of Service Outages for the Five Median Household Income Quintiles, 2018-2019

Figure 11.4: California Average Number of Days Required to Restore 90% of Service Outages for the Five Median Household Income Quintiles, 2018-2019

Figure 11.5: AT\&T California Service Outages per 100 Access Lines per Month, Longterm trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.6: AT\&T California Percent of Service Outages Restored Within 24 Hours, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.7: AT\&T California Average Duration of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.8: AT\&T California Average Number of Days Required to Restore 90\% of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.9: Frontier California Service Outages per 100 Access Lines per Month for the Five Median Household Income Quintiles, 2018=2019

Figure 11.10: Frontier California Percent of Service Outages Restored Within 24 Hours for the Five Median Household Income Quintiles, 2018=2019

Figure 11.11: Frontier California Average Duration of Service Outages for the Five Median Household Income Quintiles, 2018=2019484

Figure 11.12: Frontier California Average Number of Days Required to Restore 90\% of Service Outages for the Five Median Household Income Quintiles, 2018=2019

Figure 11.13: AT\&T California Service Outages per 100 Access Lines per Month, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.14: AT\&T California Percent of Service Outages Restored Within 24 Hours, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.15: AT\&T California Average Duration of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.16: AT\&T California Average Number of Days Required to Restore 90% of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.17: AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.18: AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.19: AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.20: AT\&T California Average Number of Days Required to Restore 90% of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.21: AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Hispanic, 2018-2019492

Figure 11.22: AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.23: AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.24: AT\&T California Average Number of Days Required to Restore 90% of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.25: AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.26: AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.27: AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019 495

Figure 11.28: AT\&T California Average Number of Days Required to Restore 90% of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.29: Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.30: Frontier California Percent of Service Outages Restored Within 24 Hours byRacial Population Characteristics - Percent Black, 2018-2019

Figure 11.31: Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.32: Frontier California Average Number of Days Required to Restore 90% of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.33: Frontier California Service Outages per 100 Access Lines per Month by RacialPopulation Characteristics - Percent Hispanic, 2018-2019

Figure 11.34: Frontier California Percent of Service Outages Restored Within 24 Hours byRacial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.35: Frontier California Average Duration of Service Outages by Racial PopulationCharacteristics - Percent Hispanic, 2018-2019

Figure 11.36: Frontier California Average Number of Days Required to Restore 90% of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.37: Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.38: Frontier California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Non-White, 2018-2019
Figure 11.39: Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019 501
Figure 11.40: Frontier California Average Number of Days Required to Restore 90% of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019 501
12: COMMUNICATIONS DIVISION STAFF SITE VISITS - not updated in Phase 2
13: PHYSICAL AND ENVIRONMENTAL FACTORS AFFECTING ILEC SERVICE QUALITY 503
Introduction 506
Effects of precipitation on out-of-service incidents 506
Effects of major wildfires on out-of-service incidents 532
Tables and Figures
Table 13.1: California Census Regions 507
Table 13.2: AT\&T California - Relationship Between Precipitation and Out-of-Service Incidents2010-2019 509
Table 13.3: Frontier California - Relationship Between Precipitation and Out-of-Service Incidents 2016-2019 509
Table 13.4: AT\&T California - Relationship Between Wildfire Events and Out-of- Service Incidents 2013-2019 533
Table 13.5: Frontier California - Relationship Between Wildfire Events and Out-of-Service Incidents 2016-2019 533
Table 13.6 AT\&T California - County-Level Relationships Between Wildfire Events and Out-of-Service Incidents 2013-2019 555
Table 13.7 Frontier California - County-Level Relationships Between Wildfire Events and Out-of-Srvice Incidents 2016-2019 557
Table 13.8: AT\&T California Infrastructure Investment in High-risk Wildfire Areas 559
Table 13.9: Frontier California Infrastructure Investment in High-risk Wildfire Areas 561
Table 13.10: \quad Rank Correlations Between Total Wildfire Acres Burned (2013-2020) and ILEC Gross Plant Investments (2018-2019) 562
Figure 13.1 California Census Regions 508
Figures 13.2 - AT\&T California - Correlation between Monthly Precipitation Rate and the 13.11 Monthly Rate of OOS Incidents per 100 Access Lines by Census Region 512
Figures 13.12- Frontier California - Correlation between Monthly Precipitation Rate and the 13.21 Monthly Rate of OOS Incidents per 100 Access Lines by Census Region 522
Figures 13.22- AT\&T California - Correlation between Wildfire Events and and the 13.31 Monthly Rate of OOS Incidents per 100 Access Lines by Census Region 534
Figures 13.32- Frontier California - Correlation between Wildfire Events and the Monthly 13.41 Rate of OOS Incidents per 100 Access Lines by Census Region 544
Appendix 13-1: AT\&T California - County-Level Regression Analyses - Wildfires vs. Telephone Service Outages 563
Appendix 13-2: Frontier California - County-Level Regression Analyses - Wildfires vs. Telephone Service Outages 617
14: ILEC RESPONSES TO SERVICE OUTAGES: VoIP SERVICES 645
Introduction 649
Regulatory status of VoIP in California 650
Principal forms of digital services that support VoIP telephony 651
ILEC VoIP service architecture 653
VoIP service quality metrics: AT\&T California 654
Individual wire center VoIP service quality performance 661
VoIP service quality metrics: Frontier California 688
Conclusion 696

Tables and Figures

Table 14.1: AT\&T California VoIP subscriptions and technologies, 2012-2019 654
Table 14.2: AT\&T California VoIP subscriptions and trouble reports, 2012-2019 655
$\begin{array}{ll}\text { Table 14.3: } \quad \begin{array}{l}\text { AT\&T California Average Duration of VoIP Trouble } \\ \text { Conditions, 2012-2019 }\end{array} & 656\end{array}$
Table 14.4: AT\&T California Principal VoIP Trouble Report Cause Categories and Subcategories, 2012-2019 658
$\begin{array}{ll}\text { Table 14.5: } & \begin{array}{l}\text { AT\&T California Annual VoIP Trouble Report Incidents by } \\ \text { Major Cause Categories 2012-2019 }\end{array}\end{array}$
Table 14.6: AT\&T California Monthly VoIP Trouble Reports per Hundred Access Lines (TRPH) by Major Cause Category, 2012-2019

Table 14.7: AT\&T California Comparison of Average Monthly Out-of-Service Trouble Reports per Hundred Access Lines (TRPH) Legacy POTS vs. VoIP Services, 2018-2019

Table 14.8: AT\&T California VoIP Access Lines in Service by Wire Center, Average per Month, 2014-2019

Table 14.9: AT\&T California VoIP Trouble Reports per Hundred Access Lines (TRPH) by Wire Center Average per Month, 2015-2019

Table 14.10: AT\&T California VoIP Out-of-service Reports per Hundred Access Lines (TRPH) by Wire Center Average per Month 2015-2019

Table 14.11 Frontier California POTS and VoIP Lines in Service, 2016-2019 689
Table 14.12: Frontier California VoIP Lines in Service and VoIP Trouble Reports 2016-2019

Table 14.13: Frontier California VoIP Service Outage Cause Indications 692
Table 14.14: Frontier California Principal Categories of VoIP Out-of-service Trouble Reports

Table 14.15: Frontier California VoIP Lines in Service and Out-of-service Trouble Reports Associated with Frontier Plant and Equipment Failures, 2016-2019

Figure 14.1: Principal components of an ILEC local distribution network.
15: CPUC CONSUMER AFFAIRS BRANCH SERVICE QUALITY COMPLAINTS 697
Introduction 699
Types and quantities of consumer complaints received by CAB 700
VoIP Services 706
CAB complaints vs. carrier trouble reports for legacy services 707
Summary 710
Tables
Table 15.1: \quad CPUC Consumer Affairs Branch - Types of Consumer Complaints Received Relating to AT\&T California - 2018-2019 701
Table 15.2: \quad CPUC Consumer Affairs Branch - Types of Consumer Complaints ReceivedRelating to Frontier California - 2018-2019 703
Table 15.3: CPUC Consumer Affairs Branch Principal Categories of Consumer Complaints 2018-2019 705
Table 15.4: VoIP and Legacy Services - Complaints, Trouble Reports and Subscription Counts, 2018-2019 706
Table 15.5: AT\&T California - Comparison of Carrier Out-of-Service Trouble Reports vs. Service Quality-Related Complaints Received by CPUC Consumer Affairs Branch - 2018-2019 708
Table 15.6: Frontier California - Comparison of Carrier Out-of-Service Trouble Reports vs. Service Quality-Related Complaints Received by CPUC Consumer Affairs Branch - 2018-2019 709
16: EFFECT OF CAF II SUPPORT UPON POTS SERVICE QUALITY 711
Introduction 713
Limitations of POTS service quality data 713
Conclusion 722

Tables and Figures

Table 16.1: Connect America Fund II Upgraded Locations Deployed in California 718
Table 16.2: AT\&T California CAF II-eligible Housing Units as Percent of Total 719
Table 16.3 Frontier California CAF II-eligible Housing Units as Percent of Total 721
Figure 16.1: Example of CAF II Eligibility areas for AT\&T and Frontier 715
Figure 16.2: Example of Deployed CAF II Locations within Eligibility areas for AT\&T and Frontier 716
Figure 16.3: California CAF II Eligibility and Deployment areas 717
17: CONCLUSION AND RECOMMENDATIONS 723
Managing the transition from legacy to current technology services 724
Conclusions 725
Recomendations 728
APPENDICES (Bound Separately)
4A-1 Updated Individual wire center service quality data - AT\&T California
4F-1 Updated Individual wire center service quality data - Frontier California

$1 \left\lvert\, \begin{aligned} & \text { EXECUTIVE SUMMARY AND } \\ & \text { OVERVIEW OF THIS REPORT }\end{aligned}\right.$

TABLE OF CONTENTS

Introduction 2
Scope of this Phase 2 Study 2
Organization of this Phase 2 Report 3
Organization of this Chapter 4
Key Conclusions and Recommendations resulting from this study 4
Managing the transition from legacy to current technology services 4
Conclusions 5
Recommendations 8
Chapter Summaries 10
Principal Phase 2 Observations and Takeaways 46

Introduction

In December 2011, the California Public Utilities Commission ("CPUC" or "Commission") opened Rulemaking (R.)11-12-001 to (a) review telecommunications carrier performance in meeting the General Order (GO) 133-C service quality standards and measures in 2010; (b) assess whether the existing GO 133-C service quality standards and measures meet the goals of the Commission to adequately protect California customers and the public interest; (c) determine whether the existing GO133-C standards are relevant to the current regulatory environment and market; and (d) determine whether there is a need to establish a penalty mechanism for substandard service quality performance.

Economics and Technology, Inc. ("ETI") was selected by the CPUC Communications Division ("CD") to undertake an examination of the facilities of the two largest Incumbent Local Exchange Carriers ("ILECs") in California - AT\&T California ("AT\&T") and Frontier California ("Frontier") - as directed by the Administrative Law Judge ("ALJ"). In responding to CD's Request for Proposals from consultants to undertake this examination, ETI had outlined a data-driven approach that would rely upon the extensive amount of data regularly being submitted by the two carriers as well as on various other public sources, along with the results of CD Staff's on-site inspections and carrier responses to data requests.

In April 2019, ETI completed this study and delivered a 584-page report to CD covering the 2010-2017 period. On January 24, 2020, CD issued a "Secondary RFP to obtain responses from firms qualified to conduct an examination of the telecommunications networks and related policies and practices of AT\&T California and Frontier Communications California for the period from 2018 to 2019." On March 5, 2020, ETI submitted a proposal in response to this Secondary RFP, and was selected by CD to undertake this additional study. Work on this Phase 2 study was commenced on April 27, 2020.

Scope of this Phase 2 Study

The scope of this Phase 2 study involved both extending the Phase 1 analysis to include 2018 and 2019 service qality and financial data, as well as to examine several issues that had received only limited attention in Phase 1. These additional areas of investigation included the following:

- Expansion of the scope of the service quality analysis to include Voice over Internet Protocol ("VoIP") services in addition to the traditional legacy circuit-switched Plain Old Telephone Services ("POTS").
- Expansion of the limited Phase 1 analysis of the relationship between adverse weather conditions and service outages, covering all regions of California.
- Correlation of Service Quality with high-risk wildfire areas.
- Correlation between household income and ILEC network investment.
- Correlation of service quality and network investment with network resiliency metrics in areas with differing racial demographics.
- If possible, determine whether areas receiving Connect America Fund II ("CAF II") support for broadband expansion exhibit improved legacy POTS service quality.

Organization of this Phase 2 Report

Not all of the chapters in the Phase 1 Report have been updated, and several new chapters have been added. For consistency, updated chapters have retained the same chapter numbering as in the Phase 1 Report. The following table summizes the content of this Phase 2 report.

Chapter	Phase 1 Report	Phase 2 Report
1	Executive Summary and Overview	Executive Summary and Overview
2	Introduction and Background for this Study	Not updated
3	California ILEC Network Overview	Not updated
4	ILEC Responses to Service Outages	Updated to include 2018-2019
4A	Service Quality ANALYSIS: AT\&T California	Updated to include 2018-2019
4F	Service Quality ANALYSIS: Frontier California	Updated to include 2018-2019
5	Infrastructure Policies and Procedures: AT\&T	Not updated
6	Infrastructure Policies and Procedures: Frontier	Not updated
7	AT\&T Corporate and California ILEC Investment Policies	Updated to include 2018-2019
8	Frontier Corporate and California ILEC Investment Policies	Updated to include 2018-2019
9	Assessment of Safety, Redundancy and Resiliency of Network(s): AT\&T	Not updated
10	Assessment of Safety, Redundancy and Resiliency of Network(s): Frontier	Not updated
11	Conclusion and Recommendations, including preliminary analysis of the relationship between an area's median household income and service quality	ILEC Service Quality and Community Demographics
12	Communications Division Staff Site Visits	Not updated
13		Physical and Environmental Factors Affecting ILEC Service Quality
14		ILEC Responses to Service Outages: VoIP Services
15		CPUC Consumer Affairs Branch Service Quality Complaints
16		Relationship of CAF II funding to POTS service quality
17		Conclusions and Recommendations

Organization of this Chapter

This chapter is organized into three sections that are intended to provide a concise summary of our extensive examination of the network infrastructures of California's two largest ILECs AT\&T California and Frontier California:
(1) Key Conclusions and Recommendations resulting from this study
(2) Executive Summary of each chapter
(3) Principal observations and takeaways

Note that footnote citations have been omitted from this Executive Summary, They can be found in the individual chapters of this report.

Key Conclusions and Recommendations resulting from this study

Managing the transition from legacy to current technology services

As we noted in our Phase 1 report, a substantial source of the persistent service quality shortcomings that have plagued legacy POTS services over the past decade has resulted from a failure to develop and manage the migration from legacy circuit-switched wireline technology to state-of-the-art IP-based and wireless services. Numerous technology transitions have occurred in the telecommunications industry over the past century or more, but the current one is unique in a number of critically important respects.

Past transitions, such as from manual switchboards to dial, from step-by-step to crossbar central office switches, from electromechanical to electronic switches, from analog to digital switching, from baseband twisted-pair copper to frequency-division multiplexing to digital timedivision multiplexing, from rotary dial to touch-tone, and from copper to fiber optics, have all occurred through a process that took place in the background, one that was largely invisible to the consumer and which, in most cases, involved little affirmative customer decisions or actions.

This process for technology transition was successful largely because the regulatory regime within which it occurred was technology-blind - i.e., the regulatory model remained the same under the previous and the new technology. But with the onset of competition and deregulation that began in the 1980s, this is no longer the case. When a customer migrates from a legacy circuit-switched service to an IP service such as VoIP or to wireless, the regulatory regime that had overseen the legacy service ceases to apply. The deregulation that applies to post-transition services presents the service provider with a radically changed set of financial incentives that essentially compel it, acting in the best interests of its shareholders as it has a fiduciary duty to do, to shift management and financial resources to these potentially far more profitable nonregulated services. Both AT\&T and Frontier have been doing exactly that. They have
directed their capital investment away from legacy serivces and over to wireless, to broadband and, most recently, to content.

The scope of regulation should apply with respect to the set of functionalities that is deemed essential and in need of some level of regulatory protection, and not with respect to the particular technology that is involved. Thus, if basic voice and some minimal level of Internet access service is deemed essential, these services should be provided in the most efficient manner in each situation, whether by wireline or wireless, or by circuit- or packet-switching technology. If reliable access to emergency services (911) and connectivity that can remain active in the event of a local power interruption are considered essential minimum service requirements from a public policy standpoint, efficient solutions can be developed under any of the technology platforms or market models.

Fixing this problem is, at bottom, a political matter, and we do not pretend to offer a political solution. However, what is clear is that the existing arrangement is not producing anything close to an optimal result, and needs to be reexamined and revised at a fundamental level.

Conclusions

Following is a brief summary of the principal conclusions resulting from ETI's Phase 2 examination of the network infrastructures and quality of service of AT\&T California and Frontier California for the 2018-2019 study period.

- Ongoing deterioration of ILEC service quality. The quality of AT\&T and Frontier voice services, which had been steadily deteriorating throughout the 2010-2017 Phase 1 study period, has become decidedly worse over the 2018-2019 Phase 2 period; the frequency of service outages has been increasing, as has their average duration.
- Persistent disinvestment. The persistent disinvestment, payments of dividends in excess of earnings, and annual depreciation accruals that exceeded gross additions that had characterized the Phase 1 study period have persisted into Phase 2; moreover, the infrastructure investments that both ILECs did make appeared aimed primarily at nonregulated broadband service upgrades rather than at improving legacy service plant.
- Further decline in the number of POTS customers. By the end of 2019, 79.1\% of the legacy service access lines that were being served by AT\&T California at the beginning of 2010 had discontinued their service. Frontier had lost 52.3% of the legacy service customers it had on April 1, 2016, the date on which it took over the California ILEC from Verizon. Both companies have, for all practical purposes, stopped marketing legacy circuit-switched Plain Old Telephone Service ("POTS"), focusing instead on broadband service as their strategy for maintaining and growing their revenue stream while allowing POTS service quality to continue to degrade. This lack of interest in POTS, coupled with the inconsequential financial penalties imposed by GO 133-D for failure to meet minimal
service quality performance metrics, would seem to explain why both ILECs have allowed POTS service quality to erode further. The potential revenue from migrating customers to broadband voice/Internet and video bundles, together with the costs the ILECs avoid by ignoring needed legacy service improvements, easily outweighs whatever financial penalties the Commission may impose for violating minimum service quality standards.
- A focus upon broadband, not POTS. Investments that were made during 2018-2019 continue to be primarily directed toward supporting new broadband services that bundle high-speed Internet access, Voice over Internet Protocol ("VoIP"), and Video. These broadband-focused upgrades have nevertheless conferred some benefit in improving POTS service quality in locations where such investments have been made. POTS service quality is decidedly better in such locations, but even in these locations, POTS service quality performance under most General Order 133-D metrics deteriorated even faster after 2017.
- By the end of 2019, AT\&T California had become an even smaller part of the overall AT\&T corporate organization that it had been two years earlier. Over the 2010-2017 period, AT\&T California’s parent AT\&T Inc. had experienced significant growth in its overall gross revenues, rising 29.2% from $\$ 124.3$-billion in 2010 to $\$ 181.2$-billion in 2019. The primary sources of AT\&T's revenue growth have come from wireless services, where the number of AT\&T Mobility connections nationwide grew by 73.9%, from 95.4 -million in 2010 to 165.9-million in 2019, and from several key acquisitions, including DirecTV and Time Warner. AT\&T California revenues have been moving in the opposite direction. falling from $\$ 9.70$-billion in 2010 to $\$ 6.63$-billion by the end of 2019. AT\&T California's share of total AT\&T Inc. revenues has fallen by an even greater amount, from 7.80% in 2010 to 3.66% in in 2019. The parent company's willingness to allocate capital to the Califronia ILEC has dimished accordingly.
- Failure to adapt network infrastructure to withstand varying weather and environmental conditions. The strong correlation between significant adverse weather conditions and the incidence of service outages that we had observed in the greater Los Angeles area in our Phase 1 study has now been confirmed to be occurring statewide. This pattern suggests that the networks of AT\&T and Frontier are not as robust as they need to be to withstand weather and climate conditions in the state. The occurrence of extreme weather events in California certainly can be anticipated to a certain degree and should thus be incorporated into the companies' engineering, design and construction, and maintenance practices. These networks must be able to withstand all types of inclement weather and provide safe and reliable service to customers.
- Effect of wildfires upon service quality and infrastructure investment. Unlike for weather, we found no identifiable correlation between wildfire events and elevated service outage rates. Service outages are heavily impacted by rainfall, which tends to occur in the late fall and winter, whereas wildfires are most frequent in the summer and early fall, when rainfall is minimal. Restoration of landline telephone service, or even reporting of service outages themselves, is not likely to be of high priority in the aftermath of a destructive wildfire, so
even if service has been interrupted, individual service outages may not be reported. We had also been asked to examine whether the ILECs had directed infrastructure investment to areas that had been heavily impacted by wildfires. However, no such investment pattern has been present for AT\&T California, and only a minimal correlation could be identified for Frontier California.
- Investment focus on higher income communities. In our Phase 1 Report, we noted that both AT\&T California and Frontier California appear to have prioritized their investments in fiber optic feeder and distribution facilities and in other broadband infrastructure to favor higher income communities. And since areas that have received such upgrades tend to perform better with respect to the various GO 133-D service quality metrics, the result is better service quality for these communities as well. This same pattern has persisted into the 2018-2019 study period for Phase 2.
- Increased focus on areas most heavily impacted by competition. Both carriers continued to experience a persistent and massive erosion in demand for POTS lines over the 2018-2019 study period. The greatest drop-offs - in some locations of as much as 90% or more - have occurred primarily in the more densely populated urban and suburban areas where customers have a wider choice of available providers and services. Notably, and as we had also observed for the 2010-2017 Phase 1 study period, it is the areas with the lowest POTS drop-off rates that have experienced the steepest deteriorations in service quality. AT\&T and Frontier appear to have focused most of their attention in those communities where competition and the potential for loss of customers is greatest. Where POTS demand erosion has been greatest, the availability of broadband has offset some of the revenue losses.
- Financial Capability. AT\&T Inc. has the financial resources to maintain and upgrade its wireline network in California, but has been pulling capital out of the state rather than putting new capital into its network here. Frontier has a strong interest in pursuing such upgrades, but lacks the financial capacity to make the necessary investments. Moreover, Frontier has suffered a financial meltdown since its 2016 purchase of the Verizon ILECs in California, Texas and Florida. Having grossly overpaid for these assets, the company has been unable to achieve an adequate and sustainable revenue stream, and was forced to seek Chapter 11 bankruptcy protection in April 2020. Even if it is successful in emerging from bankruptcy, the company will have little ongoing ability to raise capital needed to maintain and upgrade its network.
- VoIP service quality. VoIP is the principal alternative to legacy POTS for those who want to retain a wireline connection. AT\&T VoIP service experiences a slightly higher rate of service outages than AT\&T legacy services. Unlike circuit-switched services, VoIP is dependent upon locally-provided power, battery backup, and complex customer premises equipment that is not generally required for legacy circuit-switched services. The seemingly higher incidence of VoIP service outages vis-à-vis POTS could well be the result of customer premises conditions that are unique to VoIP. Finally, the so-called "digital divide"
- an issue whose importance has increased as a result of the COVID-19 crisis - raises the potential for the loss of high quality wireline voice services in rural and low-income populations that have not been targeted for broadband upgrades. With the sunset of §710 that went into effect as of the beginning of 2020, a comprehensive regulatory approach that embraces all providers of VoIP type services should clearly be a top priority.
- CPUC Consumer Affairs Branch (CAB) complaints. The number of consumer complaints received by the CAB amounts to a minuscule fraction of the total number of trouble reports received and processed by the two ILECs. Moreover, the majority of CAB complaints relate mainly to billing and other business relationship issues, not to service outages. CAB collects geo-coded customer location information, but this is not consistent with the customer of record/account data that is contained in the ILECs' trouble report records, such as the customer's account or billing telephone number, serving wire center, or other location-specific information. As a result, it is not possible to link these CAB complaints with corresponding ILEC trouble reports. That said, complaints relating to Frontier service that CAB received in 2018-2019 were substantially greater on a relative basis than those pertaining to $\mathrm{AT} \& \mathrm{~T}$, which is consistent with the rapidly deterioring service quality that Frontier experienced during these two years.

Recommendations

The overarching result of this Phase 2 examination is that the service quality failures that we had identified and documented in Phase 1 have actually become even more serious. Accordingly, we have expanded, revised and reiterated the specific recommendations that we had offered in our Phas 1 report:

- Recommendation 1: Given the enormous rate at which customers have been discontinuing legacy circuit-switched POTS-type services over the past decade, the Commission should reevaluate the role that regulation is to play with respect to legacy as well as current technology services going forward. If assuring universal availability of high quality public switched network access is to remain a central focus of regulatory policy, then advanced services, including VoIP and broadband, should be included within the scope of this policy review. There seems little reason to single out legacy services as the sole focus of service quality regulation.
- Recommendation 2: With $\S 710$ no longer in effect, GO 133 should be extended to apply to all wireline voice services whether furnished by ILECs or other large service providers.
- Recommendation 3: Expand the financial penalties for carriers that fail to meet the minimum GO 133-D service quality standards both with respect to the types of shortcomings that will be assessed and the financial magnitude of the fines or other penalties that will be imposed. We have seen no specific evidence that investments made in lieu of fines as permitted in GO 133-D $\S 7$ (a) would not have been made anyway, and (b) have resulted in specific remedial measures ained at overcoming the service quality shortcomings. The
practical result of these alternative investments is simply to negate the effectiveness of the financial penalty itself, and as such the program should be discontinued.
- Recommendation 4: In an effectively competitive market, persistently poor service quality is expected to drive customers to take their business elsewhere. The continuing erosion of both ILECs' legacy customer base that persisted throughout Phase 1 nad that has continued through Phase 2 indicates that competition for and alternatives to legacy POTS-type services has been growing and "cord-cutting" has become even more pervasive. Yet even when faced with growing competition, both ILECs' POTS service quality has been on the decline. Whether due to inertia, the non-availability of cost-effective alternatives, or a perceived need to retain a telephone service that does not require local power, customers who retain their legacy service appear to be more captive to the ILEC than those able to switch. Where competition is limited or not present, continued regulatory monitoring and enforcement of minimal service quality standards remains necessary, and financial penalties imposed due to an ILEC's failure to meet service quality standards should be sufficiently high so as to have the same financial consequences as would poor service quality under competitive market conditions.
- Recommendation 5: The GO 133-D maximum Customer Trouble Report Rates of 6\%, 8\% or 10% (depending upon wire center size) of switched access lines per month remain far too generous, and failure rates as high as these can hardly constitute acceptable service quality. The carriers have had little difficulty in meeting these standards, and they should be revised downward.
- Recommendation 6: Fines imposed by GO 133-D §9 are currently applied for aggregate service quality shortfalls calculated on a companywide basis. Instead, these fines and other financial penalties should be imposed with respect to individual wire center service quality performance, and should escalate based upon the extent to which the carrier falls short of meeting the service quality standards for each such wire center. Frontier's practice of administratively consolidating groups of individual wire centers may hae the effect of masking those with particularly poor performance and in so doing potentially escaping the imposition of a penalty. Frontier should not be permitted to continue reporting its results for consolidated "reporting units" rather than separately for each individual wire center. AT\&T has not engaged in a similar type of administrative consolidation.
- Recommendation 7: Unless carriers can offer technically valid explanations as to how and why smaller wire centers experience the poorest service quality, a uniform set of minimum GO 133-D standards should be applied to each individual wire center.
- Recommendation 8: The GO 133-D fines should vary based upon the extent of a carrier's failure to meet any service quality standard, rising in magnitude as the extent of the shortfall increases and/or persists for an extended period of time.
- Recommendation 9: The Commission should retain its requirement that URF carriers maintain their Part 32 Uniform System of Accounts ("USOA") regulatory accounting records and continue to submit annual ARMIS-type financial reports using the same accounts and account definitions that they have been required by the CPUC to maintain notwithstanding the FCC's decision to discontinue ARMIS reporting requirements after 2007. If an ILEC wants to substitute GAAP reporting for Part 32 USOA, it should be required, first, to submit a formal application for the right to make this substitution and, in that application, demonstrate that GAAP-type reporting will still meet the Commission's need for financial data sufficient to permit the type of year-over-year monitoring of investment, retirements, depreciation accruals, write-offs and write-downs, operating results, debt and debt service payments, and other financial data necessary for the Commission to carry out its regulatory mission. If the use of GAAP is authorized, the ILEC should be required to retroactively restate its USOA reports consistent with GAAP for a minimum of five (5) prior years. The financial reporting requirement should be extended to also include wire center level accounting data, similar to those that ETI had obtained through multiple data requests in the course of both Phase 1 and Phase 2 of this study. The ILECs should be required to submit these reports separately for each physically distinct wire center rather than for the groups of wire centers that Frontier had administratively consolidated for reporting purposes. The carriers should be required to submit these reports to the Communications Division on a semi-annual basis.
- Recommendation 10: The Commission should establish a process to proactively examine the alternatives that would be available to maintain adequate service to Frontier California customers in the event that the parent company no longer has the financial resources to provide safe and reliable services in California.

Chapter Summaries

4: ILEC RESPONSES TO SERVICE OUTAGES

Chapter 4 in this Phase 2 report provides an update to Chapter 4 in our Phase 1 Report to include trouble report and out-of-service activity for 2018 and 2019. The Chapter is organized into three sections. The first provides a general overview of the Commission's Customer Trouble Report and Out-of-Service reporting requirements, the types of data submitted by AT\&T California and by Frontier California, as well as ETI's methodologies for analyzing the companies' submissions. The second and third sections provide updated analyses of AT\&T and Frontier performance with respect to the GO 133-C/D Customer Trouble Report and Out-of-Service standards over the 2010-2019 study period for AT\&T, and over the April 2016 through December 31, 2019 study period for Frontier.

On April 1, 2016, Verizon transferred ownership and control of its California ILEC operations, then known as Verizon California, to Frontier Communications Corporation. In
our Phase 1 Report, we covered the full 2010-2017 study period by merging the service quality data for both the pre- and post-transfer periods. In this Phase 2 Report, we are limiting our analysis of Frontier to the 45 months from April 2016 through and including December 2019 under Frontier ownership.

For Phase 2, we have appended the trouble report data submitted by the two ILECs pursuant to GO 133-D to the corresponding Phase 1 datasets. Using these expanded datasets, we then extended the long-term trend calculations to cover, in the case of AT\&T California, the full 2010-2019 period and, for Frontier California, the 45-month period under Frontier ownership. We have also calculated trend lines for both companies covering the 2year Phase 2 period from January 2018 through December 2019. The various graphs that are provided each present three separate trend lines:
(1) the Phase 1 2010-2017 trend (for AT\&T) and the 4/2016 through $12 / 2017$ trend for Frontier;
(2) the Phase 2 2018-2019 trend for both companies; and
(3) the combined Phases $1 / 2$ trend, covering the full 2010-2019 period for AT\&T, and the 45 -month $4 / 2016$ through $12 / 2019$ period for Frontier.

An example of this graphic format is shown below for the Average Duration of AT\&T service outages::

Figure 1.1. The average duration (shown here in days) of all AT\&T California out-ofservice incidents (actual) saw a significant jump during the 2018-2019 Phase 2 study period.

Overview of the results of the Phase $\mathbf{2}$ service quality analysis

Our analysis for 2018-2019 shows a fairly consistent and pervasive degradation in both companies' service quality performance across virtually every service quality metric that we have examined. The quantity of service outages per 100 access lines - the basic CPUC service quality metric embodied in GO 133-C/D - has been steadily increasing over the twoyear Phase 2 study period, indicating a persistent, and disturbing, increase in the rate of service outages overall. The average durations of service outages has also been getting longer; both companies are taking more time, on average, to clear such outages, and the percentage of outages that are cleared within 24 hours - the target for which is specified in GO 133-C/D at 90% - has been dropping.

The massive POTS access line customer losses that both companies had been experiencing over the Phase 1 study period have persisted into Phase 2. Publicly available FCC Form 477 data show that total California ILEC legacy switched access lines in service have dropped by 72.6%, from 14.58 -million as of the beginning of 2010 to 3.99 -million as of the
end of 2018, the most recent period for which such data has been made publicly available. The drop-off rate among residential customers is even greater at 81.66%, from 8.21 -million as of the beginning of 2010 to 1.51 -million as of the end of 2018. Proprietary data provided by both ILECs, discussed in Chapters 4A and 4F below, show generally similar conditions. Switched access line customer defections are the result of many factors - most notably competition from other voice service providers, particularly from cable television MSOs, competition from mobile wireless carriers (which include affiliates of AT\&T California and of pre-transfer Verizon California), as well as from "over-the-top" Internet applications (e.g., Skype, Vonage, Ooma and, more recently from video conferencing services like Zoom, Google Hangouts, Apple Facetime) that do not involve any type ov voice service common carrier at all, other than the underlying provider of the customer's broadband access.

There is, to be sure, something of a chicken-and-egg situation here: Are customers abandoning legacy circuit-switched services because of the service quality degradations, or are the service quality degradations the result of the revenue losses arising from customer defections? Probably both, which points to something of a "death spiral" that, if not addressed, will ultimately lead to the demise of these services within a relatively short period of time.

But the general decline in switched access line demand is not uniform across the state. For many lower-density areas, customer defection rates are considerably smaller than when viewed on a statewide basis. Notably, business customers have retained their legacy POTS services at a higher rate than residential - this despite rising prices and deteriorating service quality. Even with the large numbers of customers who have sought alternatives to legacy circuit-switched services, there are still many who continue to take this service. POTS-type services are the only category of telecommunications that retains at least some vestige of regulatory protections for consumers, generally assuring some level of service availability even in low-density and hard-to-serve areas. The principal competing voice services are being offered by providers operating in highly concentrated markets. Before allowing the death spiral to run its course, we believe it is essential that policy decisions be made as to the merit of retaining these legacy services and their underlying infrastructures as a baseline for those customers that do not perceive or that do not actually have alternatives. If these services are to be retained, the ILECs must be made to bring their level of service quality up to the full GO 133-C/D standards, because it is painfully apparent that the competitive market cannot be counted upon to produce this outcome.

Data collection and reporting pursuant to General Order 133-C and subsequent 133-D

General Order ("GO") 133-C required, in relevant part, that all "facilities-based URF [Uniform Regulatory Framework] Carriers with 5,000 or more customers" report various service quality performance metrics on a monthly basis to be submitted quarterly to the Commission. GO-133-C §§3.3(c) and 3.4(c) obligate both AT\&T and Frontier to provide reports as well as the underlying ("raw") trouble ticket data on all customer Trouble Reports and Out-of-Service records occurring on and after January 1, 2010. In August 2016, the

CPUC, by D.16-08-021 in R.11-12-001, adopted GO 133-D as a revision to the prior version of the same General Order. GO 133-D added a new $\S 9$ that imposes specific financial penalties (fines) upon the ILECs for persistent failure to achieve the required service quality performance levels.

A Trouble Report (sometimes referred to as a Trouble Ticket) is generally created when a customer contacts the telephone company to report a service problem. GO 133-C/D established minimum standards and reporting levels for service on the network side of the customer/network demarcation. Using these Trouble Report records, we are able to create a range of metrics regarding the duration of the out-of-service condition. For Phase 2 of this study, we have appended the two companies’ Trouble Report records for 2018-2019 to the 2010-2017 Phase 1 data. However, as noted above, for Frontier, we have limited the Phase 2 analysis to the post-acquisition period, from April 2016 through December 2019. In all, we examined a total of 6.96-million AT\&T Trouble Report records for the 2010-2019 period, and a total of just over 300,000 Frontier Trouble Report records for the 2016-2019 Frontier ownership period.

4A: SERVICE QUALITY ANALYSIS UPDATE: AT\&T CALIFORNIA

This chapter updates Chapter 4A in our Phase 1 Report to include AT\&T California trouble report records for 2018-2019 that have been submitted by the company as required pursuant to GO 133-D. Our analysis shows that the company's performance with respect to nearly every one of the service quality metrics that we had examined in Phase 1 has deviated further from the Commission's GO 133-D service quality objectives and standards. AT\&T California continued to account for a successively smaller portion of its parent company's operations, a fact that appears to be fully reflected in the low priority that AT\&T California has been receiving both with respect to capital investment and senior management attention over the past several years.

AT\&T's legacy circuit-switched POTS access line demand drop-off rate is similar to the industry-wide results for California. This downward trend persisted into 2018 and 2019. In the two years from December 2017 to December 2019, the company lost 565,537 POTS access lines, going from 2,245,171 in December 2017 to 1,679,638 in December 2019. For the entire 10-year period from January 2010 through December 2019, total AT\&T California POTS access lines in service plummeted by 79.1%, dropping from $8,035,134$ in January 2010 to $1,679,638$ in December 2019. Every AT\&T California wire center continued to experience further erosion in POTS demand, but the drop-off rate for individual wire centers was highly variable, the highest at 96.56% in the Paradise Main wire center (which had 12,039 lines in service as of January 2010 but only 414 by the end of 2019). The greatest demand drop-offs generally occurred in the largest wire centers.

Viewed at the individual wire center level, the ratio of out-of-service conditions to total POTS lines has varied both from month-to-month and as a long-term trend over time. For
out-of-service conditions not cleared within 24 hours, some wire centers have experienced significant increases in the incidence of this condition, while others have seen improvements.

AT\&T Service Quality Performance

In our Phase 1 Report, we described a series of detailed analyses of AT\&T service quality and performance in resolving out-of-service conditions both statewide and, more importantly, on a wire center-by-wire center basis. Each of these analyses are updated here to include results for 2018 and 2019. Because GO 133-C/D does not hold ILECs responsible for the entire outage duration if a Sunday or federal holiday intervenes, outage durations are thus adjusted for GO 133-C/D compliance purposes by subtracting Sunday or federal holiday hours that fall within an outage situation. Certain additional situations have also been treated as "excluded" even though, from the customer's perspective, the service is not functioning. ETI does not believe that it is appropriate to entirely exclude all instances where, upon encountering an out-of-service condition, the customer has requested an appointment date/time at the customer's convenience because the requirement to accommodate the customer's personal needs in order to effect a restoration of service is a direct result of the service outage itself. Instead, the delay in the ultimate restoration of service attributable to the additional time needed to satisfy the customer's request for an appointment should be adjusted out of the total out-of-service duration. ETI was advised that such an adjustment is already reflected in the "CPUC Duration" calculation provided on the individual Trouble Report data records.

Inclusion of the additional 2018-2019 trouble tickets has enabled us to develop service quality trends over a 10-year period (2010-2019); but we also wanted to examine each of the two datasets separately in order to evaluate whether conditions in these last two years had improved or deteriorated relative to the Phase 1 study period. Accordingly each of the service quality charts presented in this chapter (Figures 4A. 2 through 4A.33) provides three separate trend lines - the full 10-year trend (the solid red line); the 8 -year Phase 1 trend (the dashed green line, which is approximately the same as the 8 -year trend line presented in our Phase 1 Report); and the 2-year Phase 2 trend line for 2018-2019 (the dashed purple line). This format provides a convenient visual comparison of the Phase 1 and Phase 2 results for each of the individual service quality metrics we examined.

Service quality metrics for 2018-2019

- Number of out-of-service trouble reports per 100 access lines - a slight upward trend over the 10-year study period. The rate of increase has accelerated slightly relative to where it had been for 2010-2017.
- Duration of out-of-service conditions -we observe a particularly sharp increase in 20182019. The 2010-2017 trend in average OOS duration increased by 31.0% from 2010 through 2017, but in just the last two years, that metric jumped by another
28.4% (Figure 4A.4). For outages that remained uncleared after 24 hours, their trend line average durations was lengthened by 47% over the 2010-2017 period, but for 2018 and 2019, average duration rose further, although the trend held steady over those last two years (Figure 4A.5). The results were somewhat better for all OOS when Sunday/holiday hours and "excluded" situations were eliminated, but the trend was still in the upward direction, and increased for 2018-2019 (Figures 4A. 6 and 4A.7).
- Out-of-service conditions cleared within 24 hours - GO 133-C/D §3.4(c) establishes a "Minimum Standard Reporting Level" requiring that " 90% of all out of service trouble reports [be cleared] within 24 hours [as] the set minimum standard." Only 50.4% of the roughly 5 -million out-of-service conditions had been cleared within 24 hours (Figure 4A.9); even on an adjusted basis, where Sunday and federal holiday hours were subtracted out of the outage duration, only 63.3% of out-of-service conditions had been restored within 24 hours (Figure 4A.10). The shortfall relative to the GO 133-D 90\% standard increased further in 2018-2019, where service had been restored to only 44.1% of the 573,581 out-of-service conditions (61.8% for "adjusted") within 24 hours.
- Days required to clear 90% - another approach to examining this " 90% cleared within 24 hours" requirement is to look at the length of time it takes AT\&T to reach the 90% cleared threshold. On an adjusted basis, the number of days required for 90% OOS cleared ranges from a low of 1.67 days in the first quarter of 2012 to a high of 11.15 days in the first quarter of 2011. For the most recent year (2019), the adjusted number of days to achieve 90% OOS cleared falls in the 3.8 to 5.2 range (Figure 4A.12).

Effects of geographic and other wire center attributes upon performance results

While examinations of individual wire centers is essential to isolating specific problem areas and sources of concern, it is also instructive to create groups of individual wire centers having similar geographic or other attributes (see Tables 4A.11, 4A.12). ETI constructed five "attribute dimensions" - (1) the presence of fiber upgrades; (2) wire center size (number of access lines); (3) the percentage decrease (loss) in the number of access lines in service to competing providers and/or to competing services over the study period; (4) the AT\&T Field Operations (AFO) organization to which the wire center has been assigned; and (5) the population density of the area served by the wire center (households per square mile). For each of these five attribute dimensions, ETI defined a set of categories whose potential effect upon service quality was then individually examined.

These have now been updated to include data for 2018-2019. As in Phase 1, we determined that pPerformance across most service quality metrics was better in wire centers that had been upgraded with fiber optic distribution facilities, in wire centers serving relatively high-density urban and suburban communities, in larger wire centers, and in wire centers that have experienced the largest losses of customers to competitors. However, in almost every instance and category of wire center serving area, performance across most
service quality metrics has significantly deteriorated over the 2018-2019 period relative to where it had been during the Phase 1 2010-2017 time frame.

Summary

Overall, ETI's analysis of the 5.6-million AT\&T out-of-service Trouble Report records and other pertinent AT\&T service quality data over the full 10-year 2010-2019 period indicates that the company's service quality and its response to protracted out-of-service conditions has declined, in some cases significantly, over this time frame. Of particular concern, the degradation in AT\&T service quality overall appears to have accelerated in 2018-2019. There were few exceptions within the overall AT\&T California network.

Wire Centers that have received broadband upgrades - and hence benefitted from an infusion of new investment - have fared a lot better than those locations where little or no such upgrades had taken place. Service quality and responses to outages in the very largest wire centers - particularly those in the Los Angeles area (the Los Angeles and San Gabriel AFO Districts) actually showed some improvements, whereas other AFO Districts exhibited deteriorating service quality conditions. In terms of absolute numbers, AT\&T out-of-service incidents declined, but the decline was less than in proportion to the large decrease in the number of POTS lines in service that AT\&T has experienced over the 10-year study period. The various inter-category relationships were largely maintained in the last two years, but most metrics saw significant losses in all categories in 2018-2019.

4F: SERVICE QUALITY ANALYSIS UPDATE: FRONTIER CALIFORNIA

As of the end of December 2019, the company will have been under Frontier management for 45 months. During this period, Frontier has put its own stamp on the company's operations and, accordingly, there seems little point in retaining the Verizon ownership period in our analysis. More importantly, the company's parent has been in the throws of a massive financial crisis that began shortly after its April 2016 takeover of the three former Verizon ILECs - in California, Texas and Florida (the "CTF acquisition") - that ultimately Frontier to seek Chapter 11 bankruptcy protection in April 2020.

A NOTE ABOUT FRONTIER WIRE CENTER DATA

In total, Frontier California, and Verizon California before it, operate approximately 270 wire centers. Under Verizon ownership, the company had been reporting trouble ticket and out-of-service data separately for each of these 270 wire centers. However, for some unexplained reason, following its takeover, Frontier has administratively - but not physically - implemented a succession of consolidations of a number of these individual wire centers for reporting purposes, ultimately into approximately 198 combined "reporting units." ETI believes that Frontier's unexplained restructuring of its wire center data undermines the Commission's clear intent, in adopting the variouis GO 133 reporting requirements, to obtain and track service quality at the individual wire center level. By merging two or more separate wire centers into a single unit for reporting purposes, Frontier effectively conceals its service quality metrics for each of the individual wire centers within the consolidated group. As a consequence, the Commission can no longer track GO 133-C/D service quality performance at the wire center level for roughly half of all Frontier wire centers. Additionally, because some data continues to be reported at the individual wire center level and some wire center names and CLLI codes seem to have been changed or eliminated altogether, these consolidations have made it difficult to accurately integrate multiple datasets for analysis purposes. Henceforth in this Report, we shall refer to Frontier "reporting units" rather than as wire centers.

Frontier has been hemorrhaging customers almost from the date of the acquisition

Like ILECs nationwide, Verizon California had been losing customers for its legacy services long before it announced its deal in February 2015 to sell the three CTF companies to Frontier for $\$ 10.54$-billion. On the date of that announcement, Verizon California was still serving approximately 1.45 -million POTS access lines; by the time the deal closed on April 1, 2016, that number had dwindled by 16.6%, to $1,201,218$. As of the end of the Phase 1 study period (December 31, 2017), Frontier California was serving only 879,489 POTS access lines, representing a drop of 26.8%, relative to the April 1, 2016 acquisition date, and as of the closing date of the Phase 2 study period (December 31, 2019), only 572,975 legacy service access lines remained on the Frontier California network, a decrease of 52.3\% relative to the April 1, 2016 closing date of the CTF acquisition. Moreover, these losses were hardly confined to POTS-type services. As of February 2015 when the deal was announced, FiOS - Verizon's brand name for its Fiber-to-the-Premises ("FTTP") broadband service - was available to approximately 2.65 -million homes within the Verizon California operating area. Indeed, the broad availability of FiOS across all three of the CTF companies was seen as a major justification for Frontier's acquisition. But by the closing date on April 1, 2016, only 388,881 Frontier California customers were still taking FiOS from the company, and as of the end of 2019, that number had dwindled to only 194,008 .

Notably, the calculated long-term trend in total out-of-service incidents decreased from 17,824 in the second quarter of 2016 to 12,752 in the fourth quarter of 2019. Thus, while POTS lines in service saw a 52.3% decrease over the period, out-of-service incidents decreased by about 28.5%. Over the period of Frontier ownership, the relative drop-off in legacy POTS access lines greatly exceeded the relative decrease in total out-of-service
incidents. Out-of-service incidents per 100 access lines in service thus increased over the period under Frontier management. Moreover, a principal focus of the Commission's concerns regarding ILEC service quality - the number of out-of-service incidents extending for more than 24 hours per 100 access lines - which had been falling over the first seven quarters of Frontier ownership, has reversed course and is rising over the 2018-2019 Phase 2 period. Gains that had been achieved by Frontier in reducing the actual durations of reported OOS conditions occurring in the immediate post-acquisition period were thus reversed, with outages becoming progressively longer in overall duration after 2017.

As with AT\&T, ETI's other approach to examining this " 90% cleared within 24 hours" requirement is to calculate the average length of time it took for Frontier to reach the 90% cleared threshold. Following improvement over the April 2016 to December 2017 period, as with the other out-of-service metric we examined, these gains did not persist into 20182019.

FRONTIER CALIFORNIA

PERCENTAGES OF ACTUAL AND ADJUSTED ("CPUC") OUT-OF-SERVICE CONDITIONS CLEARED WITHIN 24 HOURS AND DAYS REQUIRED TO CLEAR 90\%

	Actual		Adjusted	
	Percent Cleared within 24 hours	Days Required to Clear 90\%	Percent Cleared within 24 hours	Days Required to Clear 90\%
2Q2016	22.0\%	5.70	28.0\%	4.72
3Q2016	38.8\%	3.95	44.5\%	3.01
4Q2016	53.7\%	3.75	60.6\%	2.77
1Q2017	31.1\%	6.23	36.8\%	5.08
2Q2017	63.1\%	3.04	70.0\%	2.14
3Q2017	63.6\%	3.06	72.2\%	2.15
4Q2017	69.0\%	2.69	78.6\%	1.77
1Q2018	56.3\%	3.27	66.3\%	2.30
2Q2018	65.6\%	2.85	79.3\%	1.78
3Q2018	66.8\%	2.80	79.3\%	1.74
4Q2018	52.4\%	3.44	75.1\%	2.06
1Q2019	16.1\%	10.70	48.6\%	8.17
2Q2019	29.8\%	7.65	59.3\%	5.39
3Q2019	28.4\%	6.07	61.5\%	4.68
4Q2019	35.3\%	4.99	63.3\%	3.11

Effects of geographic and other wire center attributes upon performance results

As with our analysis of AT\&T California service quality, ETI has constructed and applied the same five "attribute dimensions" to our analysis of Frontier - (1) the presence of FiOS broadband availability; (2) wire center size (number of access lines); (3) the percentage decrease (loss) in the number of access lines in service to competing providers and/or to competing services over the study period; (4) the population density of the area served by the wire center (households per square mile); and (5) the Frontier Operating Area to which the wire center has been assigned. For each of these five attribute dimensions, ETI defined a set of categories whose potential effect upon service quality was then individually examined.

These have now been updated to include data for 2018-2019. As in Phase 1, we determined that performance across most service quality metrics was better in wire centers that had been upgraded with fiber-to-the-premises (FTTP) FiOS-capable distribution facilities, in wire centers serving relatively high-density urban and suburban communities, in larger wire centers, and in wire centers that have experienced the largest losses of customers to competitors. However, in almost every instance and category of wire center serving area, performance across most service quality metrics has significantly deteriorated over the 2018-2019 period relative to where it had been in the 21 months following Frontier's acquisition of the company.

Summary

Overall, ETI's analysis of the 306,151 Frontier Trouble Report records and other pertinent Frontier service quality data indicates that the company's service quality and its response to protracted out-of-service conditions had improved following its April 1, 2016 takeover, but those gains were short-lived. Those Frontier wire centers that have received broadband upgrades in the form of FiOS-capable fiber-to-the-premises ("FTTP") distribution facilities - and hence have benefitted from an infusion of new investment fared a lot better than those locations where little or no such upgrades had taken place. Service quality and responses to outages in the very largest wire centers - particularly those in the Los Angeles area (the "Beach Cities Operating Areas) actually showed improvements both with respect to the frequency of out-of-service incidents as well as the duration of those outages that did occur, but even here the gains were reversed after 2017.

7: AT\&T CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE

This chapter provides updated financial data both for Pacific Bell d/b/a AT\&T California and for its corporate parent, AT\&T Inc. In Chapter 7 of our Phase 1 Report, we offered the following assessment of AT\&T California's financial condition and its investment policies:

- AT\&T California's potential revenue from raising prices and curtailing investments in its legacy POTS services far exceed any financial penalties imposed for its failure to meet the GO $133-\mathrm{C} / \mathrm{D}$ service quality standards.
- To support its "harvesting" strategy and maintain revenues despite a massive drop-off in demand, AT\&T California has raised its rates for legacy flat-rate residential service by 152.6% since the service was de-tariffed by the CPUC in 2009.
- AT\&T Inc. senior management's interest in and attention to its legacy wireline ILEC operations has been largely supplanted by its wireless operations and the recent satellite TV and video content acquisitions.
- AT\&T California financial statements show an incomplete assessment of the ILEC's financial condition due to the large volume of inter-affiliate transactions made at transfer prices that are not set on the basis of arm's length negotiations.
- Cumulatively, over the full 8-year Phase 1 study period, AT\&T California had total net after-tax income of $\$ 3.4$-billion, but paid out $\$ 7.6$-billion to its parent company, AT\&T Inc, thereby eroding the California company's capital base by roughly $\$ 4.2$-billion and impairing its ability to maintain and upgrade its aging infrastructure. (See Phase I Report, p. 380, Table 7.5.)
- AT\&T, Inc. has also been eroding its California ILEC's capital base by investing less in its infrastructure than its annual depreciation accruals and retirements.
- AT\&T's "harvesting" philosophy explains why AT\&T has failed to improve service quality for its POTS services at least to the point where the GO 133-C/D standards can be achieved, because the gains it can realize by raising prices and curtailing investment and maintenance far exceed any financial penalties it might suffer from persistently poor service quality.

Our examination of the two additional years of financial results indicates that, for the most part, the various conditions and practices that we had previously identified have persisted and, in some respects, have been further escalated.

The AT\&T California component of parent AT\&T Inc. revenues has been steadily diminishing, as has the share of the overall AT\&T capital budget that is being allocated to the California ILEC. Over the 2010-2017 period, AT\&T California's parent AT\&T Inc. had experienced significant growth in its overall gross revenues, rising 29.2% from $\$ 124.3-$ billion in 2010 to $\$ 160.5$-billion in 2017. By 2019 , AT\&T gross revenues had reached \$181.2-billion. AT\&T's market capitalization as of December 31, 2019 was approximately $\$ 283.5$-billion, although as of December 15, 2020, it had declined to about $\$ 217.5$-billion as a result of the broader COVID-19 economic impacts. The primary sources of AT\&T's revenue growth have come from wireless services, where the number of AT\&T Mobility
connections nationwide grew by 73.9%, from 95.4 -million in 2010 to 165.9 -million in 2019 , and from several key acquisitions, including DirecTV and Time Warner.

AT\&T California revenues, on the other hand, have been moving in the opposite direction. Its gross revenues in 2010 were $\$ 9.70$-billion, dropping to $\$ 8.63$-billion in 2017, and by another 23.15% as of the end of 2019 , to $\$ 6.63$-billion. AT\&T California's share of total AT\&T Inc. revenues has fallen by an even greater amount, from 7.80% in 2010 to 3.66% in in 2019. And in California, despite having experienced a cumulative loss of 76.4% in legacy switched access lines between 2010 and 2019, the company's gross revenues decreased by only 31.6% over the same period. Clearly, a significant portion of AT\&T California operating revenues come from the ongoing succession of POTS rate increases and from services other than legacy POTS lines.

But AT\&T California's response to the rapidly eroding demand for legacy POTS services has not been to cut prices to retard such "cord-cutting," but instead to implement large rate increases so as to "harvest" as much revenue from the remaining POTS customers as long as they continue to retain their service.

AT\&T California has continued its practice of disinvesting in its California local network infrastructure.

Because AT\&T California is a wholly-owned subsidiary of AT\&T Inc., it is the parent AT\&T Inc. that determines the amount of its ILECs' net income that will be paid over to the parent in the form of dividends and the amount of capital investment funds that will be made available for local infrastructure investment by its individual operating companies. Cumulatively, over the full 10-year period, AT\&T California had total net after-tax income of $\$ 6.1$-billion, but paid out $\$ 11.0$-billion in dividends to its parent company, AT\&T Inc, thereby eroding the California company's capital base by roughly $\$ 4.4$-billion and impairing its ability to maintain and upgrade its aging infrastructure. Thus, rather than reinvesting a portion of its net income back into its network, AT\&T California has been consistently disinvesting in its network. Gross Telecommunications Plant in Service ("TPIS") carried on AT\&T California's USOA books decreased by roughly $\$ 3.9$-billion from the beginning of 2016 through the end of 2019, but net plant - i.e., Gross TPIS less accumulated depreciation and amortization - over that same period appears to have increased by $\$ 5.5$-billion, from $\$ 4.9$-billion to $\$ 10.4$-billion. AT\&T has ascribed this anomaly to a change in accounting method that it suggests had been authorized by the FCC. And these adjusted USOA-type Net TPIS values for 2018 and 2019 likely overstate the amounts that would exist under strict USOA accounting. AT\&T California did make Gross Plant Additions for 2018 and 2019 totaling some $\$ 2.13$-billion net of adjustments, but only a small fraction of that spending appears to have been directed to legacy POTS services.

Inter-affiliate transactions at non-arm's length transfer prices also contribute to the parent company's pattern of disinvestment in AT\&T California oerations.

But even AT\&T California's nominally reported revenues, expenses and net income cannot by themselves provide a complete or accurate picture of the ILEC entity's financial performance. This is because of the extensive nature and amount of inter-affiliate transactions that involve both purchases made by the ILEC from other AT\&T affiliates as well as sales made by the ILEC to other AT\&T affiliates on an ongoing basis. In 2018 and 2019 alone, total AT\&T California operating expenses (excluding depreciation and amortization) were $\$ 7.16$-billion, 58% of which, some $\$ 4.15$-billion, were spent on services purchased from other AT\&T affiliates. In those same two years, AT\&T California's total operating revenues were $\$ 12.43$-billion, 16.17% of which, some $\$ 2.01$-billion were realized from sales to various other AT\&T affiliates.

With the exception of tariffed switched and special access services that are being purchased from AT\&T California by various other AT\&T affiliates, the specific transfer prices at which these transactions are recorded can hardly be viewed as being set on the basis of arm's length negotiations. Since both the seller and buyer in each instance are wholly-owned by the same parent company, the nominal transfer price has little or no effect upon the parent company's bottom line. However, if it is the parent company's goal to extract cash from the ILEC entity, setting an inflated transfer price for services the ILEC purchases from other AT\&T affiliates, or heavily discounting the prices that the ILEC charges for whatever (non-tariffed) services it sells to other AT\&T affiliates, can accomplish this as effectively as making a dividend payment to the parent, but with far less exposure as to the precise purpose of the policy.

GO 133-D §9.7 Alternative Investments

In August 2016, the Commission issued a revised GO 133-D that imposes financial penalties upon ILECs that persistently fail to meet minimal POTS service quality standards. GO-133-D §§9.3, 9.4 and 9.5 provide for escalating daily fines where a carrier's failure to meet the required service standards persists for an extended period of time. A total of \$9.1million in fines was assessed against AT\&T California since this provision became effective. $\S 9.7$ allows offending carriers to submit an "Alternative Proposal for Mandatory Corrective Action" whereby carriers can avoid the fine by agreeing to invest an amount of at least double the fine if such an investment will be effective in remedying the service problem for which the fine had been imposed. AT\&T California has sought approval of alternative proposals for mandatory corrective action under $\S 9.7$ in lieu of paying the assessed fines in 2017, 2018 and 2019, and the Commission has approved all of these requests. CD has been tracking the effectiveness of such "alternative investments" in improving service quality, but most of these projects have been completed so recently (or are still ongoing) that no conclusion as to their effectiveness in improving service quality can be drawn at this time.

AT\&T California's total Gross Plant Additions for 2018-19 amounted to approximately \$2.3-billion. Over that same period, AT\&T's expenditures on GO 133-D §9.7 "Alternative Investments" in lieu of fines projects amounted to roughly $\$ 2.7$-million, representing a de minimis fraction - slightly over one-tenth of one percent - of the Company's total gross infrastructure investments. Of perhaps greater importance, the minuscule extent of such "alternative" investment outlays when compared with even the identified plant rehabilitation costs begs the question as to whether these expenditures would have been made anyway, irrespective of the GO $133-\mathrm{D} \S 9.7$ opportunity to make investments is legacy service infrastructure that would ostensibly not have been made in the absence of the GO 133-D §9.7 offer.

Summary and conclusions

AT\&T California has continued its policy of disinvesting in its California local network infrastructure, and where it is investing, a large portion of its Gross Plant Additions continue to be directed toward expanding its ability to offer services other than core legacy circuitswitched POTS services. Moreover, there appears to be wide variation across all of AT\&T California's 615 wire centers as to the amount of new investment that has been directed at each of them, and ETI has not observed any specific pattern to explain this prioritization. There is no indication, for example, that investment dollars are being directed toward those wire centers that have been underperforming with respect to service quality or in their ability to meet the Commision's GO 133-C/D service quality standards.

8: FRONTIER CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE

A lot has happened to Frontier since our Phase 1 Report

On April 1, 2016, Frontier Communications Corp. completed its acquisition of what is now Frontier California under a three-state ILEC purchase from Verizon that also included Verizon ILEC operations in Florida and Texas (the "CTF acquisition"). Frontier paid Verizon \$10.54-billion in cash for the three ILECs, and financed the purchase primarily through the issuance of new debt. Even before Frontier took over control of these three Verizon ILECs, its stock had fallen by around 33% from the (equivalent of) $\$ 125.70$, where it had been February 9, 2015, shortly after the deal with Verizon had been announced. On July 10, 2017, Frontier implemented a 1 -for- 15 share reverse split so as to avoid de-listing of its stock. On December 16, 2020. Frontier stock was trading at $10.8 \notin$ per share, down 99.91% from its February 2015 high. In our April 2019 Report on Phase 1 of this Network Examination, we expressed serious concerns as to Frontier's near-term and ongoing ability to maintain and modernize its California wireline ILEC network so as to provide reliable service to California consumers. We noted that Frontier has been hemorrhaging customers in all major service categories across all of its 29 -state footprint since the CTF acquisition.

Following the 2016 CTF purchases, Frontier became the nation's fourth largest ILEC with roughly 5.77 -million residential and business customers (roughly corresponding to about 8.77 -million switched access lines) across 28 states, but in making these various acquisitions, the company had assumed $\$ 11.9$-billion in new debt, bringing its total debt as of the end of 2017 to around \$17-billion. By the end of 2019, Frontier's ILEC access lines had eroded by 28.6% to approximately 6.33 -million. Its total long-term debt was only slightly lower than in 2017, at $\$ 18.3$-billion.

Frontier has financed its succession of ILEC acquisitions primarily through the issuance of debt. (Source: Frontier Communications Corp. Forms 10-K, 10-Q)

Frontier's growth strategy has, in each case, involved the absorption of large, multi-state operations, some of which had been larger in size than the pre-acquisition Frontier. However, each of these acquisitions produced a large, one-time revenue spike followed in each instance by revenue erosion from the new immediate post-acquisition level - producing a sort of "sawtooth" effect. In the first quarter of 2016 - the last 3-month period immediately preceding the Verizon acquisition - Frontier companywide revenue was running at an annual rate of roughly $\$ 5.4$-billion. In the second quarter of 2016 - immediately following the Verizon acquisition - Frontier revenue had nearly doubled, jumping to an annual rate of around $\$ 10.4$-billion. But by the final quarter of 2019, Frontier's total revenue was running at an annual rate of less than $\$ 7.8$-billion - in less than four years, Frontier had given up more than half of the $\$ 5$-billion revenue gain that had resulted from its 2016 CTF purchase. But the company had acquired that additional $\$ 5$-billion in operating revenues by incurring more than $\$ 11$-billion in new debt, and while its revenue gain had been cut in half, its total debt remained only slightly below its 2016 post-acquisition level.

Frontier Communications Corp. Revenues, 2005-2019.
(Source: Frontier Communications Corp. Forms 10-K, 10-Q).

Out of the $\$ 10.54$-billion that Frontier paid Verizon when the deal closed in April 2016, it allocated some $\$ 2.5$-billion to "Goodwill" and another $\$ 2.16$-billion to "Other Intangibles," which it attributed primarily to the value of Verizon's 3-state "Customer Base" that was included in the acquisition. In the case of the Frontier California ILEC entity, Frontier recorded $\$ 517.1$-million of Goodwill at the time of acquisition. In 2017, Frontier California Goodwill was increased by $\$ 93.97$-million to $\$ 611.1$-million. In 2019, the entire $\$ 611.1$ million in Goodwill was written-off Frontier California's regulatory accounting books. Thus, only $\$ 6.24$-billion out of the total CTF purchase price was associated with "Property, Plant and Equipment." At year-end 2016, some \$12-34-billion out of Frontier Communications Corp.'s $\$ 29$-billion of Total Assets was associated with Goodwill and Other Intangibles; at year-end 2019, all of Frontier's Goodwill had been written off, and its "Other Intangibles" had eroded to just over \$1-billion.

These write-downs of intangibles resulted in a net 2019 Operating Loss of \$4.87-billion. However, since the write-downs do not affect cash, when the write-downs are ignored, Frontier's 2019 Operating Income (before the intangible write-downs) was a positive \$852million. But total 2019 debt service payments (principal repayments plus interest) were $\$ 3.54$-billion, well in excess of the company's cash income for that year. Frontier filed for Chapter 11 bankruptcy protection in April 2020.

Verizon California had been consistently disinvesting in its California local network infrastructure, and Frontier has been pursuing a similar strategy.

As we noted in our Phase 1 Report, Verizon California would typically pay dividends to its parent company that exceeded its net operating income. We view such practices as constituting disinvestment, in that by paying dividends in excess of earnings, the subsidiary (Verizon California) is effectively transferring a portion of its capital base to its parent. Since taking over the company in April 2016, Frontier California has issued no dividends to its parent, Frontier Communications Corporation. However, Frontier's total net income was actually a loss of $\$ 476$-million. Frontier California did have positive net income in 2017, but paid no dividend to its parent.

Disinvestment also arises when retirements and depreciation accruals exceed the gross plant additions in any given year or cumulatively over time. This has the effect of reducing Net Plant in Service, a condition that has prevailed under Frontier ownership of the company. Since taking over the company, Frontier has invested \$914.7-million (net of adjustments) in gross plant additions, but has recorded $\$ 188.3$-million in retirements and has taken \$1.74-billion in depreciation accruals - a net disinvestment of just over \$1-billion. Since acquiring the California ILEC from Verizon in 2016, Frontier continued to invest less in Gross Plant Additions than it took in retirements and depreciation accruals, resulting in a net disinvestment of 469.5 -million.

GO 133-D §9.7 Alternative Investments

As we discussed in our Phase 1 Report, in August 2016, the Commission issued a revised GO 133-D that imposes financial penalties upon ILECs that persistently fail to meet minimal POTS service quality standards. GO-133-D $\S 9.3,9.4$ and 9.5 provide for escalating daily fines where a carrier's failure to meet the required service standards persists for an extended period of time. A total of $\$ 3.35$-million in fines was assessed or is currently pending against Frontier California since this provision became effective. §9.7 allows offending carriers the opportunity to submit an "Alternative Proposal for Mandatory Corrective Action" whereby carriers can avoid the fine by agreeing to invest an amount of at least double the fine if such an investment will be effective in remedying the service problem for which the fine had been imposed. Frontier California has sought approval of alternative proposals for mandatory corrective action under § 9.7 in lieu of paying the assessed fines in 2017, 2018 and 2019. The company's "alternative investment" proposals for 2017 and 2018 amounted to $\$ 4.14$-million, in liew of paying $\$ 2.07$-million in fines for the two years. The Commission approved these requests for 2017 and 2018. For 2019, Frontier has calculated its fine at $\$ 1.28$-million and sought CPUC approval for its "alternative investment" proposal to invest $\$ 2.56$-million in its network. CD staff recommend against acceptance of Frontier's "alternative investment" proposal, noting that Frontier's "past corrective action plans have thus far not resulted in sustained improvement in its service quality performance, as demonstrated by Frontier CA's need to file this advice letter, which is its third consecutive Section 9.7 corrective action plan. As a result, it is
unclear to Staff whether the project Frontier CA describes in its AL 12828 proposed corrective action plan would result in the necessary sustained performance results that are consistent with the Commission's long-term goals for service quality." On March 4, 2021, the Commission issued Resolution T-17731 accepting Staff's recommendation and denying Frontier's request.

In 2018-2019, Frontier California invested \$562.8-million in Gross Plant Additions, primarily in central office equipment (\$301.4-million) and outside plant (\$261.4-million). Had it simply paid the fine, Frontier would have been out $\$ 2.07$-million. That extra $\$ 2.07$ million that Frontier had offered to invest (over and above the $\$ 2.07$-million it would have paid anyway) amounts to less that 0.37% of Frontier's total 2018-2019 plant additions - a truly de minimis sum, little more than a rounding error. There is no indication that, absent its acceptance of the $\S 9.7$ Alternative Investments option, the same total amount would not have been invested anyway. In our Phase 1 Report, we had concluded that the GO 133-D fines were insufficient to offer a financial inducement for ILEC compliance with the Commission's service quality minimum performance standards because the cost of the fine represented a minuscule fraction of the cost that the ILEC would need to incur to improve its service quality. We reiterate that observation here, as well as our recommendation that the level of these fines be significantly increased. We certainly concur with the Staff's recommndation and the subsequent Commission decision that Frontier's alternative investments proposal for 2019 be denied.

Summary and conclusions

Frontier California represents a major component of its new parent, Frontier Communications Corp. But with the parent company's financial condition at a crisis stage, Frontier California's financial condition and investment policies will be dictated by conditions that are largely beyond the CPUC's control. The California ILEC entity has virtually no ability to raise equity or debt capital on its own. If the parent company successfully emerges from bankruptcy, its ability to raise capital may improve, and at this point that is speculative at best Frontier California has seen deterioration in almost all of the GO 133-D service quality metrics in most of the company's wire centers over the 20182019 period. With Frontier having invested nearly a billion dollars in California since acquiring the company, this is not the outcome that one would expect to see.

11: ILEC SERVICE QUALITY AND COMMUNITY DEMOGRAPHICS

There is considerable variation in service quality performance across each ILEC's wire centers. In our Phase 1 study, we undertook to preliminarily examine whether there was any observable relationship between a community's median household income and the treatment that its ILEC was providing customers with respect to service quality. That examination was limited to AT\&T California wire centers, and its results were discussed in Chapter 11 of our Phase 1 report, at pp. 518-522. For Phase 2, we have been tasked with extending this
examination to include Frontier California as well as AT\&T California, and also to examine whether there was any evidence of service quality differences in communities with varying racial characteristics.

We have determined that the incidence of service outages for both AT\&T and Frontier appears to be somewhat lower in higher income areas, although the companies' responses to those service outages that do occur do not appears to have a similar relationship with median household income levels. For AT\&T, there is some indication that communities with proportionately higher black and Hispanic populations do experience higher incidences of service outages, but this pattern does not seem to be present for Frontier (see Figures 11.17 through 11.40). For both ILECs, there is no discernable pattern that responses to those service outages that do occur is linked to racial demographics.

Median household income, ILEC investment, and service quality

We categorized AT\&T and Frontier wire centers into income quintiles based upon population and household count data from the 2010 Decennial Census as well as Median Household Income ("MHI") data from the 2018 US Census Bureau American Community Survey ("ACS") database. The 2010 Census reports demographic data at the Census Block level (15-digit geographic identifier), the most granular geographic area available, while the ACS reports MHI at the Census Tract level (11-digit geographic identifier). To best approximate the average MHI of households located within each AT\&T or Frontier wire center footprint, we weight 2018 Census Tract level MHI by 2010 Census Block level household counts. There are roughly 500,000 Census Blocks in AT\&T California's operating areas. Since all of the service quality metrics were developed at the individual wire center level, we needed to associate each Census Block with its serving wire center. This was accomplished for AT\&T California utilizing a mapping analysis that was prepared for us by the Communications Division's GIS staff. Frontier provided us with a similar mapping, except that this was done at a Census Tract level. Census Tracts are larger, and include many individual Census Blocks.

Investment

We calculated the weighted (by POTS access lines in service as of December 31, 2018, the midpoint of the Phase 2 study period) average Median Household Income of the areas served by these wire centers in each of the specified quintiles, together with the average Gross Plant Addition investment per access line, average monthly out-of-service incidents per 100 access lines, and the percentage of wire centers equipped for broadband services, as summarized in the following Tables for AT\&T and Frontier, respectively. As the data indicate, although average gross plant additions per access line are similar in all five quintiles, wire centers serving higher income areas tend to have fewer out-of-service incidents and greater broadband availability than their counterparts in lower income communities.

AT\&T CALIFORNIA MEDIAN HOUSEHOLD INCOME AND 2018-19 GROSS PLANT ADDITIONS						
Quintile	Households	Median Household Income	$\begin{gathered} \text { Access } \\ \text { Lines } \\ \text { Jan } 2019 \end{gathered}$	2018-2019 Gross Plant Additions per Access Line	Out-of- Service per 100 ALs per month	Pct Wire Centers with Broadban d
0\%-20\%	1,142,727	\$36,673	205,299	\$1,099	2.29	83.6\%
20\%-40\%	1,654,443	\$48,591	305,857	\$1,131	1.77	84.3\%
40\%-60\%	2,611,078	\$59,866	434,625	\$1,018	1.59	95.0\%
60\%_80\%	2,610,669	\$75,927	485,362	\$900	1.36	97.5\%
80\%-100\%	2,565,025	\$105,167	473,132	\$1,268	0.96	98.3\%
$\begin{aligned} & \text { Total } \\ & \text { AT\&T-CA } \end{aligned}$	10,583,942	\$70,540	1,904,275	\$1,077	1.59	91.7\%
NOTE: Individual Census Blocks may include parts of more than one wire center and more than one ILEC serving area. The total number of households passed by AT\&T shown here may well exceed those actually present in AT\&T California's service area. However, for our purposes, the relevant calculation is the Median Household Income, which would apply for the entire Census Block irrespective of which ILEC serves a particular household.						

FRONTIER CALIFORNIA						
MEDIAN HOUSEHOLD INCOME AND 2018-19 GROSS PLANT ADDITIONS						

NOTE: Individual Census Tracts may include parts of more than one wire center and more than one ILEC serving area. The total number of households passed by Frontier shown here may thus exceed those actually present in Frontier California's service area. However, for our purposes, the relevant calculation is the Median Household Income, which would apply for the entire Census Tract irrespective of which ILEC serves a particular household.

A substantial focus of AT\&T and Frontier plant investment in recent years has been directed at upgrading its feeder and distribution outside plant to fiber optics aimed at upgrading the companies' ability to offer high-speed broadband Internet access and video services to customers. It appears that, to some extent, both companies have directed these upgrades toward higher income communities, as shown in Table 11.4.

AT\&T CALIFORNIA AND FRONTIER CALIFORNIA WEIGHTED AVERAGE MEDIAN HOUSEHOLD INCOME IN WIRE CENTER SERVING AREAS WITH AND WITHOUT BROADBAND SERVICE UPGRADES BASED ON 2018 AMERICAN COMMUNITY SURVEY DATA				
	AT\&T California		Frontier California	
Category	Wtd Avg MHI	No. of Wire Centers	Wtd Avg MHI	No. of Wire Centers
No broadband	\$ 50,322	50	51,385	35
FTTP / FiOS				66
Other broadband	\$ 70,616	555	75,252	178
NOTE: AT\&T California has deployed FTTP in certain areas, but we do not have the breakdown of such deployment at the individual wire center level. Hence, for AT\&T, "Other broadband" should be interpreted as "All broadband," including both FTTN and FTTP locations.				

Racial characteristics of the population being served and service quality

ETI was also tasked with examining whether there is any discernable pattern or relationship between ILEC service quality and the racial characteristics of individual ILEC service areas. To undertake this analysis, we utilized data from the US Census Bureau's 2010 American Community Survey ("ACS"), the most current source of this type of information. ACS compiles racial and nationality data at the individual Census Block level, which we aggregated to AT\&T and Frontier wire center serving areas as described above. This was necessary because the most granular level of ILEC service quality data that is available is at the wire center level. While we have attempted to compile this information, we caution the Commission as to both its precision and usefulness. Individual wire centers typically serve populations ranging from a few thousand in rural areas to 100,000 or more in urban areas. These serving areas typically embrace a large variety of diverse populations, both residential and nonresidential. Our aggregations necessarily obscure the details of individual communities within a given wire center serving area. In addition, there is likely some correlation between racial and income attributes, which we have not expressly examined or controlled for. Thus, it is possible that the variation in service quality metrics that appear to be linked to race may well be attributable to income differentials.

For both ILECs, there is no indication that wire centers that serve relatively higher percentages of Black, Hispanic or Non-White populations exhibit more frequent incidents of service outages; moreover, as with our income analysis, there does not appear to be any observable pattern associated with any of the service restoration metrics for either company.

Conclusion

While there is some evidence that both AT\&T California and Frontier California may be devoting more attention toward the condition of their central office and distribution plant in higher income and non-minority areas, there is no evidence of any inherent racial bias or redlining, nor is there any indication that higher income or non-minority communities are receiving more favorable treatment with respect to service restorations.

As we have noted, these results are at best an indication that more detailed examination of ILEC service quality performance below the individual wire center level may be warranted. A more granular analysis of this sort is well outside the scope of this Study. We do not consider the results presented here to be conclusive, but at best suggestive of a potential concern that could require more detailed investigation.

13: PHYSICAL AND ENVIRONMENTAL FACTORS AFFECTING ILEC SERVICE QUALITY

In Chapter 4, we observed that 16.8% of the roughly 5 -million AT\&T out-of-service conditions over the 2010-2017 Phase 1 study period had been attributed to "Heavy Rain," "Weather," "Moisture," or "Wet Plant." Over the Phase 2 2018-2019 period, that number almost doubled, to 29.6%. In our Phase 1 Report, we provided details of our preliminary examination of the potential interaction of adverse weather - principally precipitation upon the incidence of Out of Service (OOS) Trouble Reports. That analysis was, however, limited, and covered only the greater Los Angeles area. We had observed a seemingly erratic pattern of out-of-service incidents that appeared to be highly variable from one period to the next. We hypothesized that one such exogenous source might well be weather or other environmental factors. To test this and focusing specifically on the greater Los Angeles area, ETI compared the incidence of out-of-service trouble reports with weather conditions extant at the time, specifically, with the amount of precipitation that occurred in the area being served by a given wire center. We identified a substantial correlation between precipitation and service outages.

For Phase 2, we have been asked to extend this analysis to cover the full 2010-2019 time frame, and to study a broader geographic area covering all of California. To accomplish this, we compiled precipitation statistics from the National Oceanic and Atmospheric Administration's ("NOAA") Global Summary of the Month ("GSOM") dataset for each of the ten "Census Regions" in the state. ETI identified NOAA weather station locations first by county, then aggregated these by averaging total monthly precipitation for all of the counties included within each of the ten Census regions. We then aggregated individual wire center Trouble Report statistics by county and then by Census Region. We calculated Coefficients of Determination (R^{2}) and t-statistics for each of the ten Census Regions and for each of AT\&T California and Frontier California, respectively, as summarized on the following Tables for AT\&T and Frontier, respectively:

AT\&T CALIFORNIA RELATIONSHIP BETWEEN PRECIPITATION AND OUT-OF-SERVICE INCIDENTS 2010-2019			
Census Region	No. of Wire Centers	Coefficient of Determination R^{2}	t-statistic
1 Superior California	107	. 676	15.696
2 North Coast	58	. 490	10.655
3 San Francisco Bay Area	99	. 756	19.138
4 Northern San Joaquin Valley	53	. 564	12.365
5 Central Coast	54	. 592	13.077
6 Southern San Joaquin Valley	65	. 403	8.922
7 Inland Empire	13	. 378	8.477
8 Los Angeles County	69	. 520	11.308
9 Orange County	32	. 507	11.008
10 San Diego - Imperial	60	. 466	10.154
Source: NOAA GSOM dataset; ETI analysis of AT\&T California Out-of-Service incidents 2010-2019			

TFRONTIER CALIFORNIA RELATIONSHIP BETWEEN PRECIPITATION AND OUT-OF-SERVICE INCIDENTS 2016-2019			
Census Region	No. of Wire Centers	Coefficient of Determination R^{2}	t-statistic
1 Superior California	4	. 471	3.187
2 North Coast	17	. 500	6.553
3 San Francisco Bay Area	4	. 652	8.969
4 Northern San Joaquin Valley	13	. 206	3.343
5 Central Coast	20	. 457	6.014
6 Southern San Joaquin Valley	38	. 545	7.171
7 Inland Empire	53	. 618	8.336
8 Los Angeles County	37	. 746	11.238
9 Orange County	4	. 587	7.812
10 San Diego - Imperial	2	. 099	2.178
Source: NOAA GSOM dataset; ETI analysis of Frontier California Out-of-Service incidents 2016-2019			

The results for both ILECs and across all ten Census Regions are both striking and consistent. For AT\&T California, the Coefficients of Determination R^{2} varied between a low of .378 for the Inland Empire Region to a high of .756 for the San Francisco Bay Area

Region. The high t-statistics for all ten Census Regions confirm that these correlations are statistically significant at the 99.9% confidence level. As noted, the Coefficient of Determination is interpreted as the percentage of variation in the Dependent Variable (OOS Incidents in this case) that is explained by variations in the Independent Variable (Inches of Precipitation). Thus, for the Bay Area, 75.6% of all AT\&T California Out-of-Service incidents can be attributed to the effects of precipitation. Even in the largely desert Inland Empire Region, 37.8% of AT\&T California OOS incidents are attributable to precipitation.

For Frontier California, the Coefficients of Determination R^{2} varied between a low of .099 for the San Diego / Imperial Region to a high of .746 for the Los Angeles County Region. The high t-statistics for seven of the Census Regions are statistically significant at the 99.9% confidence level; two others are statistically significant at the 99% level, and one at the 97.5% level. Note, however, that four of the ten Frontier Census Regions each have 4 or fewer wire centers, thus reducing the statistical significant of the calculated results. The Region with the lowest R^{2} - San Diego - has only two Frontier wire centers, such that no statistical significance can legitimately be ascribed to this result.

The strong relationship between rainfall and the rate of service outages provides compelling evidence that both ILECs' California distribution networks are not as robust as they need to be to account for local weather conditions over time. Weather or any other environmental factors that "caused" a particular out-of-service incident may (arguably) make that event "beyond management's immediate control," but the design and construction of the distribution network should certainly account for these types of weather conditions. And that is certainly well within the scope of "management's control" and responsibilities.

Effects of major wildfires on out-of-service incidents

The massive wildfires that have plagued California in recent years have prompted the Communications Division to include, within the scope of Phase 2 of the Network Examination, the following areas of additional inquiry:
(a) Was service quality worse overall in areas that are prone to wildfires and in areas that had major wildfires during the time period of 2010-2019?
(b) Has service quality improved or deteriorated in areas that suffered severe wildfire damage?
(c) Analysis of Investment and infrastructure technology in high risk fire areas (both rebuild and existing).

We collected and analyzed wildfire statistics maintained by the California Department of Forestry and Fire Protection (CALFIRE). The CALFIRE data includes dates and locations of major wildfire incidents from 2013 to 2020, as well as the number of acres burned in each incident. Initially, we directed our examination to the same ten Census Regions that we had
utilized in examining the effects of precipitation on service outages. To calculate the monthly number of wildfire incidents by Census Region, we identified the county (or counties) in which each major fire occurred, then aggregated the number of incidents in each county within each of the ten California Census Regions. We performed a similar aggregation for the monthly number of acres burned for each Census Region. However, unlike the strong relationship identified in our precipitation analysis, the correlation between wildfire incidents or wildfire acres burned and OOS per 100 Access Lines proved to be extremely weak.

Wildfires occur mainly during hot summer and fall months when rainfall is minimal, whereas OOS incidents arise during the periods of heaviest precipitation, which occurs during late fall and winter months. On the possibility that the geographic extent of entire Census Regions might overshadow the more localized impact of individual wildfire incidents, we prepared a similar set of regression analyses at the individual county level. We did this for each of the 51 counties in which AT\&T California provides service, and for each of the 26 counties where Frontier California operates. We surmised that, by studying the interactions between wildfires and service outages across smaller geographic units, it might be possible to identify correlations that would be masked at the full Census Region level. However, we did not observe any greater correlation at the individual county level than at the full Census Region level.

Investment and infrastructure in high risk fire areas

We examined relationships between total acres burned over the 2013-2020 period and infrastructure investments made by each of the two ILECs. By hypothesis, if ILECs were responding to areas of high wildfire risk with large scale infrastructure investment, we would expect to see some relationship between the extent of wildfire activity and the level of investment being made in a given area. Using county-level wildfire and Gross Plant Additions investment data, we compared Total Acres Burned with two ILEC investment indicia - Total Gross Plant additions and Gross Plant Additions per Access Line. Because infrastructure reliability and investment would be expected to lag behind the actual wildfire damage, we utilized 2018-2019 Gross Plant Additions data for this analysis.

Because we utilized county-level data for this analysis, we would not expect a perfect match between the wildfire and investment data for each ILEC because, with very few exceptions, wildfires do not affect an entire county and ILECs do not generally serve an entire county. Additionally, because California counties vary in population by a factor of around 1000-to-1 and population has, if anything, an inverse relationship with the total number of acres burned, we utilized two alternate indicia of investment activity:

- Total 2018-2019 Gross Plant Additions for each county
- County-level Gross Plant Additions per Switched Access Line (as of January 2019) for each county

All else equal, ILEC investment in any given area is driven largely by the number of customers in that area, so we would expect larger investments to be made in the more populous counties. To control for this, we also examined unit gross plant investment per access line in service, using the January 2019 midpoint of the 2018-2019 Phase 2 study period. We also calculated the percentage of total wildfire acres burned for each of the counties served by each ILEC, as well as the percentage of that ILEC's total Gross Plant Additions for each of the counties it serves. We observed very little correlation between Total Acres Burned and either Total Gross Plant Additions or Gross Plant Additions per Access Line.

In order to examine the extent of any such correlation quantitatively, we calculated a statistic known as the Spearman Rank Correlation both as between Total Acres Burned and Total Gross Plant Additions, as well as between Total Acres Burned and Gross Plant Additions per Access Line. Both Acres and Burned and Gross Plant Additions vary by orders-of-magnitude on a county-by county basis, diminishing the usefulness of traditional linear correlation analysis. Rank correlation avoids this problem. Out Rank Correlation calculations for each of the two ILECs are summarized here:

\left.| RANK CORRELATIONS BETWEEN | | | |
| :--- | :---: | :---: | :---: |
| TOTAL WILDFIRE ACRES BURNED (2013-2020) | | | |
| AND ILEC GROSS PLANT INVESTMENTS (2018-2019) | | | |$\right)$

Notably, the results of these calculations are decidedly different for AT\&T and Frontier. In the case of AT\&T, the Rank Correlation between Total Acres Burned and Total Gross Plant Additions is negative 0.1138 , suggesting an inverse relationship between these two variables. When we look at investment on a per-access line basis, the correlation is slightly positive, but quite low at only 0.0452 . The clear conclusion here is that, for AT\&T, there is no obvious relationship between its investment priorities and areas of high fire risk.

For Frontier, the rank correlation between Total Acres Burned and Total Gross Plant Additions is a positive 0.5517 , suggesting a relatively strong positive correlation. Even when viewed on a per access line basis, we still see a rank correlation of 0.2419 . Of course, these calculations do not reveal any causal link between Frontier's investment activities and the incidence of wildfires, although the particularly high rank correlation between Acres Burned and Total Gross Plant Additons, which does not control for the volume of customers, could be interpreted as inferring at least some causal link in this case.

Conclusion

Our analysis of the effect of exogenous environmental conditions upon service quality of legacy circuit-switched telephone service has identified a strong correlation between precipitation and out-of-service incidents, but no discernable relationship between wildfires and service quality. The massive wildfires that have become all too common in California certainly destroy infrastructure as well as homes and other buildings on a grand scale, and undoubtedly have an impact upon the ability of the ILEC to furnish service in the affected area. However, if a home is destroyed along with the owner's telephone service, dealing with that type of service outage is likely a fairly low priority for the property owner, and as such does not result in a simply out-of-service trouble ticket on an individual customer basis. Frontier's plant investments, which in recent years have focused heavily upon outside plant, do appear to have some positive relationship with the extent of wildfires in a given county, but our analysis does not firmly establish a direct causal link between fires and investment overall.

14: ILEC RESPONSES TO SERVICE OUTAGES: VoIP SERVICES

For more than a decade, traditional circuit-switched voice telephone services have been in the process of being replaced by Voice over Internet Protocol ("VoIP") technology. VoIP requires the deployment of digital services to the customer's premises with sufficient bandwidth to accommodate both voice telephony as well as the various other digital (typically Internet-based) services that are used by the customer. Twisted-pair copper "loops" that have traditionally been provided to almost all residential premises and to most business locations can support digital end-to-end services, but generally cannot support the bandwidth requirements of typical residential and business customers for the full suite of voice and broadband Internet applications, particularly streaming video.

When an ILEC legacy circuit-switched POTS customer orders some form of broadband access from the ILEC, the carrier will generally migrate the customer's voice telephone service to a VoIP offering that is delivered, together with the customer's broadband Internet access, via the digital service. AT\&T California does not offer VoIP services to customers who do not also take broadband Internet access and/or video from the ILEC; Frontier had a similar policy until July 2019, when it began offering VoIP service on a stand-alone basis.

Regulatory status of VoIP in California

In 2012, the California legislature adopted a new $\S 710$ of the California Public Utilities Code whose effect was to remove most aspects of any VoIP service from the CPUC's regulatory jurisdiction. $\S 710$ had included a "sunset" provision that became operative as of January 1, 2020; CD has advised us that $\S 710$ is no longer in effect and that the CPUC currently has resumed its jurisdiction over VoIP services. That notwithstanding, the ILECs continue to maintain that VoIP remains deregulated and that the Commission does not have
jurisdiction with respect to this service. Whether or not the sunset of $\S 710$ has the effect of reinstating the CPUC's ratemaking authority with respect to VoIP services, as a practical matter the Commission no longer regulates most basic service rates in any event.

VoIP service quality metrics: AT\&T California

AT\&T California began offering VoIP services in 2012. Demand for AT\&T VoIP service peaked in 2015 and has been on the decline since then. AT\&T has provided us with approximately 3.3-million VoIP-related Trouble Report records for the 2012-2019 period. The following table compares the total number of annual Trouble Reports with the "average" number of VoIP subscriptions during each year.

AT\&T CALIFORNIA VoIP SUBSCRIPTIONS AND TROUBLE REPORTS 2012-2019							
Year	EOY Subs	Average Subs for Year	Total Trouble Reports	Monthly TRs as Pct of Subs	Out-of- Service Trouble Reports	Monthly OOS TRs as Pct of Subs	OOS TRs as Pct of all TRs
2011							
2012			170,387	5.58\%	109,189	3.57\%	64.08\%
2013			423,661	5.85\%	282,685	3.90\%	66.72\%
2014			561,227	5.58\%	346,958	3.45\%	61.82\%
2015			586,742	4.68\%	316,543	2.52\%	53.95\%
2016			516,908	3.88\%	310,023	2.33\%	59.98\%
2017			451,563	3.40\%	296,370	2.23\%	65.63\%
2018			323,580	2.57\%	215,073	1.71\%	66.47\%
2019			270,798	2.45\%	185,504	1.68\%	65.80\%
Source: AT\&T FCC Form 477 filings, AT\&T California Response to CD Data Request 11-A-01.							

Expressed in relative terms, there appears to have been a steady improvement in the percentage of VoIP subscriptions that experience trouble conditions in any given month, both in total as well as in the incidence of out-of-service conditions. However, the relative incidence of out-of-service reports as a percentage of all trouble reports has remained within the same $50 \%-69 \%$ range over the full 8 -year Phase 1 study period.

Unlike legacy POTS services where customer premises equipment ("CPE") consists mainly of technologically simple analog telephone handsets, VoIP services require, among other things, a local source of electrical power including some form of battery back-up, either a VoIP (digital) handset or an "analog telephone adapter" ("ATA") to enable conventional telephone handsets to be used with VoIP services. 58.4% of all VoIP trouble reports were associated with distribution plant issues. 22% of all VoIP trouble reports were
associated with some other network facility issue. Less than one percent were caused by weather, with another 2.5% the result of various environmental conditions, including fires, animals and floods.

The following table compares service outage rates for legacy circuit-switched and VoIP services, and provides several important findings. In the direct comparison of the 503 wire centers where both VoIP and POTS are offered and where trouble report data is available for both types of service (calculations (4) and (5) in the table), VoIP out-of-service Trouble Reports per Hundred access lines (TRPH) is actually 38.7% greater than for POTS. And when we compare calculations (2) and (3), we find that the incidence of POTS out-ofservice conditions is 63.5% greater in the 76 wire centers where VoIP is not offered than in the 530 wire centers where it is. This result is, of course, consistent with our finding that most POTS service quality metrics are better in wire centers that have been equipped for broadband services than in those where no broadband upgrade investments have been made.

AT\&T CALIFORNIA COMPARISON OF AVERAGE MONTHLY OUT-OF-SERVICE TROUBLE REPORTS PER HUNDRED ACCESS LINES (TRPH) LEGACY POTS vs. VoIP SERVICES 2018-2019			
	Calculation method	Number of Wire Centers	Out-of-Service Reports per Hundred Access Lines
1	Legacy POTS access lines - all wire centers for which data is available	606	1.2366
2	Legacy POTS access lines - wire centers where VoIP is offered	530	1.2213
3	Legacy POTS access lines - wire centers where VoIP is NOT offered	76	1.9964
4	Legacy POTS access lines - wire centers where VoIP Trouble Report data is available	503	1.2138
5	VoIP access lines	503	1.6842

Individual wire center VoIP service quality performance

AT\&T VoIP TRPH metrics appear to fall well short of the GO 133-C/D threshold. Certain wire centers appear to exhibit particularly high TRPH numbers, but these seem to be due primarily to the nature of the underlying data upon which this analysis was based rather than to systemic issues in those locations. That said, the spike in overall trouble reports and in service outages that appears to have occurred starting in 2017 does raise some concerns, and it may be worthwhile for the Commission to pursue this further as the importance of VoIP as the preferred method of providing basic service grows in future years.

VoIP service quality metrics: Frontier California

On the day it took over control of the California ILEC from Verizon, Frontier California had VoIP lines in service. By the end of December 2019, that number had decreased to , a roughly 50% erosion in the number of VoIP subscribers between the April 1, 2016 acquisition date and December 31, 2019. Frontier has not provided a technology breakdown with respect to its VoIP services, but we know that not all of Frontier's VoIP customers were being served out of FiOS-equipped locations. Frontier's VoIP services were being targeted primarily at residential subscribers; as of the end of December 2019, only about business customers were taking VoIP services from Frontier. Notably, Frontier experienced a far greater drop-off in legacy circuit-switched access lines over that same period. By the end of 2019, Frontier California's average monthly VoIP lines in service had decreased by 59.26%. Total trouble reports experienced a much greater decrease, to 40.69% of the August 2016 number, indicating improvement overall. However, as far as out-ofservice trouble conditions, those actually increased by 54.79% despite a 41.74% decrease in the number of VoIP lines in service.

Conclusion

VoIP service is dependent upon locally-provided power, battery backup, and complex customer premises equipment that is not generally required for legacy circuit-switched services. The seemingly higher incidence of VoIP service outages vis-à-vis POTS could well be the result of customer premises conditions that are unique to VoIP. These conditions arise both for ILEC- and cable-provided VoIP services. Finally, the so-called "digital divide" - an issue whose importance has increased as a result of the COVID-19 crisis raises the potential for the loss of high quality wireline voice services in rural and lowincome populations. Although the Commission has created LifeLine programs that involve some (but not all) wireless providers, for wireline services the focus has traditionally been on ILEC circuit-switched offerings. As these services are phased out, new LifeLine initiatives that include all major VoIP providers (ILECs and cable MSOs) will need to be formulated. With the sunset of $\S 710$ that went into effect as of the beginning of 2020, a comprehensive regulatory approach that embraces all providers of VoIP type services should clearly be a top priority.

15: CPUC CONSUMER AFFAIRS BRANCH COMPLAINTS

The mission of the CPUC's Consumer Affairs Branch ("CAB") is to assist consumers of public utility services address problems that may arise from time to time in connection with their service, billing issues, and/or other relationships with the utility. The CAB describes its role as follows:

The California Public Utilities Commission (CPUC) regulates privately owned California utilities that provide energy, water, and telecommunications services. If you have a question or complaint concerning one of these utility providers, help is available through the Consumer Affairs Branch (CAB).

CAB's team of representatives is ready to assist consumers with billing and service matters with regulated utilities. Through dedicated specialists, CAB assists consumers in resolving application denials (appeals) for the California LifeLine program participation. ...

For Phase 2, ETI has been tasked with examining two issues related to the CAB's activities: (1) whether wire centers with a high number of consumer complaints have worse service quality metrics than the statewide average; and (2) the breakdown of complaints of VoIP versus traditional telephone service.

CAB handles both informal complaints as well as formal complaints that are ultimately adjudicated by the CPUC. Our examination was, however, limited to informal complaints. CAB collects geo-coded customer location information, but this is not consistent with the customer of record/account data that is contained in the ILECs' trouble report records, such as the customer's account or billing telephone number, serving wire center, or other location-specific information. Because CAB complaint records do not typically include the complainant's billing telephone number (BTN), it is usually not possible to link individual consumer complaints as submitted to CAB with Trouble Ticket records maintained by the carriers and furnished to us for purposes of this Study. As a result, we are able to address only limited aspects of issue (1). However, we have reviewed records of all complaints received by CAB pertaining to AT\&T California (U-1001) and Frontier California (U-1002) over the 24 month period from January 2018 through December 2019, and are able to provide an overall assessment of the relationship between service outages as reported to the carriers vs. service-related complaints submitted to CAB.

Types and quantities of consumer complaints received by CAB

Over the Phase 22018 -2019 study period, CAB received a total of 5,729 Complaints pertaining to AT\&T California and 2,925 Complaints pertaining to Frontier California. In its complaint data records, CAB identifies approximately 75 principal types of complaints by their subject. To support our analysis, we have associated each of the CAB complaint types with one of six (6) principal complaint categories, as follows:

```
Service Quality issue
Billing / Commercial Dispute
Customer service issue
VoIP
    Service quality issues
    Other issues (e.g., billing, customer service)
Non-phone issue (Cable, Internet)
Unknown
```

The "Service Quality issue" category, which relates most directly with Trouble Reports submitted to the carriers for service outages and other service-related problems, represents less than a quarter of the total complaints received by CAB. For AT\&T California, only 1,213 , or 21.17%, of the 5,729 complaints received by CAB pertained to service outages and other telephone service related service quality issues. By comparison, over the 2018-2019 period, AT\&T California customers reported some 573,585 service outages to the carrier. For Frontier California, only 718 , or 24.55%, of the 2,925 complaints received by CAB during 2018-2019 pertained to telephone service related service quality issues, whereas Frontier California customers reported some 81,021 service outages to the carrier during 2018 and 2019.

CPUC CONSUMER AFFAIRS BRANCH				
PRINCIPAL CATEGORIES OF CONSUMER COMPLAINTS				
	2018-2019			

Nearly half of the complaints submitted to CAB were associated with billing or other commercial interactions between the customer and the carrier. Customer Service complaints represented 13.18% and 11.83% of all complaints received relating to AT\&T California and Frontier California, respectively. Thus, more than half of all complaints received by CAB have no direct counterpart with respect to service outages or other trouble tickets as reported to the carriers. CAB also received many complaints that addressed services over which the CPUC has limited or no direct regulatory authority, such as cable TV, Internet access, and even inside wire issues.

ECONOMICS AND

VoIP Services

Also included in the CAB records were complaints dealing with VoIP services; however, the vast majority of these dealt with issues other than service-related problems, such as billing and related commercial matters, delayed service installations, and other customer service issues. Nevertheless, it may still be instructive to compare VoIP service quality-related complaints with those addressing service quality issues associated with legacy services, and to present these in the context of Trouble Reports both for VoIP and for legacy services as well as the number of lines in service for each of the two carriers. Table 15.4 below compares CAB VoIP Complaints, VoIP Trouble Tickets, and VoIP subscriptions for each of the two carriers over the Phase 2018-2019 study period, and provides similar data for legacy services as well. Subscription counts are averaged over the two years so as to correspond with the Complaint and Trouble Ticket totals over that same period.

VOiP AND LEGACY SERVICE COMPLAINTS, TROUBLE REPORTS AND SUBSCRIPTION COUNTS2018-2018				
	VolP		Logacy telephone service	
Complaint category	AT\&T	Frontier	AT\&T	Frontier
Service-related Complaints received by CAB	106	37	1,213	718
Service outage Trouble Reports received by carriers	400,577	63,726	573,585	81,021
Average subscriber counts 2018-2019				
Service-related CAB Complaints per 100 lines in service (2018-19 average)	0.0115	0.0165	0.0628	0.1054
Total Out-of-Service Reports per 100 VoIP lines in service, 2018-2019	43.53	28.45	29.68	11.89
Average Out-of-Service Reports per month, per100 lines in service	1.8138	1.1854	1.2367	0.4954

Both carriers appear to be experiencing higher rates of service-related trouble conditions (i.e., out-of-service reports per month per 100 lines in service) for VoIP services than for their legacy telephone services. Notably, the CAB service-related complaints per 100 lines in service are actually lower for VoIP services than for legacy services. However, these numbers are so small, and represent little more than a minuscule fraction of all trouble reports for both categories of service, that no meaningful conclusions as to the reasons for this seemingly inverse relationship are possible.

CAB complaints vs. carrier trouble reports for legacy services

In that regard, while the total quantity of service-related complaints submitted to CAB is an extremely small fraction of the total number of trouble reports received by both carriers, the relative number of CAB complaints has been consistently and significantly greater for Frontier California than for AT\&T California. Over the 2018-2019 period, CAB received 1,213 service-related complaints from AT\&T customers, representing 0.2115% of the 573,585 service outage trouble tickets processed by AT\&T over that same period. For Frontier, CAB received 718 service-related complaints, representing 0.862% of the 81,021 service outage trouble tickets processed by Frontier. While the absolute number of complaints received by CAB are still extremely small relative to the number of service problems being reported directly to the carriers, the stark difference in the instance of such complaints as between customers of the two carriers is striking.

CAB complaint data would be enormously more useful, going forward, if customerspecific service details, such as serving wire center, service and billing telephone number(s), and street address could be routinely and consistently recorded along with the description of the problem being experienced by the customer. While these details may be of lesser importance for complaints that do not directly involve service outages and other servicerelated issues, at the very least this additional account-specific data should be collected where the complaint does involve service quality problems.

16: RELATIONSHIP OF CAF II FUNDING TO POTS SERVICE QUALITY

The Connect America Fund was created by the FCC "to be spent annually to make broadband-capable infrastructure available to as many unserved locations as possible within these areas served by price cap carriers, while sustaining voice and broadband-capable infrastructure in high-cost areas that would not be served absent support." As noted, the focus of the Connect America Fund was to assure increased availability of broadband services to otherwise unserved areas. However, the focus of this study has been and remains service quality of legacy circuit-switched basic voice telephone service, which we have been referring to as "Plain Old Telephone Service" ("POTS").

For Phase 2, we have been asked to examine whether it is possible to determine if areas that have been recipients of Connect America Fund II ("CAF II") funding exhibit identifiably better service quality for legacy circuit-switched basic voice telephone services than is evident for otherwise similar areas that have not benefitted from CAF II-funded broadband infrastructure upgrades. We have determined that the data that would be necessary to support such an analysis is not available and, as such, we are unable to offer an assessment as to whether areas receiving CAF II support exhibit improved POTS service quality.

Limitations of POTS service quality data

The trouble report and other service quality data that has been provided by the two ILECs pursuant to GO 133-C/D and made available to ETI in both Phases 1 and 2 of this study is in all instances organized at the wire center level; indeed, GO 133-C/D reporting requirements and service quality metrics are also stated at the individual wire center level. Eligibility for CAF II funding is based upon certain attributes that are determined at the individual Census Block level. As such, customer-specific location data sufficient to identify individual customers within a wire center serving area and, in particular, to identify those customers that are served by broadband infrastructure that has been constructed with CAF II funding, is not available.

There are 710,145 census blocks in California, 500,454 of which are in the areas served by AT\&T California. Only 9,210 of these fall within the CAF II eligibility standards. And those 9,210 Census Blocks contain a total of 33,761 individual housing units, or 0.31% of the $11,018,714$ total housing units within AT\&T California operating areas (see Table 16.2). Frontier has provided data on its operating areas at the Census Tract level. Frontier provides service in 1,991 Census Tracts containing a total of $3,414,452$ housing units. However, it is likely that some of these Census Tracts extend into areas not served by Frontier, so the total number of housing units where Frontier service is available is likely somewhat lower. There are 3,928 Census Blocks falling with Frontier operating areas containing a total of 12,812 housing units (see Table 16.3). And it is still not possible to associated any individual customer record with the corresponding Census Tract.

We have also been advised by Communications Division staff that, unlike Frontier California, which has used CAF II funding to support construction of wireline broadband infrastructure, AT\&T California's approach to broadband deployment in CAF II-funded locations has been almost exclusively through the use of fixed wireless technology. Accordingly, since AT\&T California has apparently not been using CAF II support for any wireline broadband upgrades, there is no a priori basis to expect any residual result of wireless upgrades to be an improvement in wireline service quality.

Conclusion

For the reasons discussed above, we are not able to provide an assessment as to the impact of CAF II funding for wireline or fixed wireless broadband deployment occurring in only a small portion of individual wire centers upon overall legacy circuit-switched voice telephone service quality as measured at the full wire center level.

Principal Phase 2 Observations and Takeaways

4: ILEC RESPONSES TO SERVICE OUTAGES: PHASE 2 UPDATE

- ETI's analysis of the condition of AT\&T and Frontier's networks in California is, among other things, based upon the approximately 7.3-million Customer Trouble Report records submitted by the two companies over the 2010-2019 Study Period.
- Our Phase 2 analysis shows a fairly consistent and pervasive degradation in both companies' service quality performance across virtually every service quality metric that we have examined.
- 16.8% of the roughly 5-million AT\&T out-of-service conditions over the Phase 1 study period had been attributed to "Heavy Rain," "Weather," "Moisture," or "Wet Plant." Over the Phase 2 2018-2019 period, that number almost doubled, to 29.6\%.
- The source of most service outages continues to be largely confined to weather-driven and other failures in outside plant, rather than to the ILECs' aging central office switches or associated equipment.
- Substitution of wireless for wireline services continues. FCC data indicate that, for California, total wireline voice service access lines in service (ILEC and non-ILEC, circuit-switched and VoIP) decreased by 6.23-million, down 32.72\%, from 19.65-million as of the beginning of 2010 to 13.42 -million as of the end of 2018. During the same period, the number of wireless subscriptions in California increased by 10.4-million, from 32.94 -million connections in 2010 to 43.34 -million in 2018 . Overall, there were 3.9 million more wireless connections than the total population in California, which was 39.4 million people at the end of 2018.

4A: SERVICE QUALITY ANALYSIS UPDATE: AT\&T CALIFORNIA

- AT\&T California's performance in 2018-2019 has deteriorated relative to where it had been in the 2010-2017 Phase 1 study period, and its performance with respect to nearly every one of the service quality metrics that we had examined in Phase 1 has deviated further from the Commission's GO 133-D service quality objectives and standards.
- The greatest demand drop-offs for legacy POTS services continues to be experienced in the largest wire centers.
- The trend in average duration of all out-of-service conditions over one hour had been steadily increasing over the Phase 1 study period, and spiked further in 2018-2019. By the end of 2019, it took AT\&T 67\% longer to restore service than it took in 2010.
- Over the 2010-2019 study period, AT\&T's average duration for service outages exceeding 24 hours has increased by roughly 67%.
- During 2018-2019, 55.9\% of the 573,591 out-of-service conditions (38.2% on an "adjusted" basis) remained uncleared after 24 hours, up from the corresponding 49.6\% / 36.7\% levels during the 2010-2017 period. To satisfy the GO 133-C/D §3.4(c) requirement, these percentages would need to drop to less than 10%.
- On an adjusted basis, the number of days required for AT\&T to clear 90% of all out-of-service conditions was increasing at a faster rate over the 2018-2019 period than over the longer Phase 1 period. Over the eight years from 2010Q1 through 2017Q4, the number of days required for AT\&T to clear 90% of service outages increased at an annual rate of 3.37%, from 4.10 days to 5.30 days. Over the next 24 months, from 2017Q4 to 2019Q4, the days to clear 90% jumped at an annual rate of 13.77%, from 5.30 to 6.86 .
- There continues to be little effective competition for POTS services. If the market were sufficiently competitive, the greatest loss of demand would occur in wire centers exhibiting the poorest service quality. In fact, the greatest drop-off in demand has occurred in wire centers with the best service quality records.
- Performance across most service quality metrics is better in wire centers that have been upgraded with fiber optic distribution facilities, in those serving higher-density urban and suburban communities, in larger wire centers, and in those with the largest losses of customers to competitors. But in almost every category, performance has significantly deteriorated over the 2018-2019 period.
- Wire centers upgraded with fiber to support broadband services achieve better service quality performance scores in every category - but in 2018-2019, service quality in both types of wire centers was decidedly inferior to what had been achieved during the Phase 1 2010-2017 period. Based upon Phase 2 trend lines, AT\&T needed only 1.15 days to clear 90% of service outages in wire centers with fiber optic facilities as of the end of 2019; for non-upgraded wire centers, it took 2.43 days to clear 90%. The corresponding figures as of the end of Phase 1 (4Q2017) were 1.10 and 1.86.
- The strong relationship between the number of POTS lines in a wire center and the quality of service provided has persisted into the 2018-2019 period, with the number and the rate of increase in OOS per 100 POTS lines continuing to be lowest in the very largest (over 20,000 lines) wire centers. However, service quality has deteriorated in all line-size categories since 2017.
- Wire centers that had experienced the lowest rate of POTS line losses - less than 50\% over the study period - saw the largest increase in service outages; for those with successively larger line loss percentages, the incidence of service outages increased more slowly or remained almost constant over the study period. But performance in nearly all of the service quality metrics we studied deteriorated after 2017.
- Except in areas with the highest population density, AT\&T's response to out-of-service conditions has generally deteriorated over the study period. That deterioration appears to have accelerated for all population density categories in the 2018-2019 period.
- Of the five AT\&T maintenance (AFO) districts, LA/Bakersfield and San Gabriel had shown significant improvements in most OOS metrics during the Phase 1 study period. However, even those improvements appear to have largely reversed in 2018-2019.
- Since the bulk of AT\&T's investments in its ILEC network have been aimed at upgrades that support broadband services, the AFO Districts with the smallest percentage of such upgrades have continued to experience substantial degradations in service quality into the 2018-2019 period. This result further underscores the pressing need for infrastructure investment irrespective of AT\&T's pursuit of the broadband market.

4F: SERVICE QUALITY ANALYSIS UPDATE: FRONTIER CALIFORNIA

- The greatest demand drop-offs for legacy POTS services generally occurred in the largest of Frontier's reporting units.
- Over the 2016-2019 Frontier ownership period, POTS access lines in service experienced a 52.3% decrease, dropping from 1,201,218 to 572,975 . Thus, in less than four years after taking over the ILEC, more than half of Frontier California's POTS customers had discontinued their service.
- Over the period of Frontier ownership, the relative drop-off in legacy POTS access lines greatly exceeded the relative decrease in total out-of-service incidents; thus, under Frontier ownership, out-of-service incidents per 100 access lines in service increased.
- Improvements in service quality that were accomplished during the first seven quarters following Frontier's takeover were reversed in 2018-2019, which saw increases in the numbers of service outages lasting more than 24 hours and in the average duration of all service outages.
- 57.85% of the roughly 112,022 out-of-service conditions (34.84% on an "adjusted" basis) remained uncleared after 24 hours by Frontier during the 2018-2019 Phase 2 period. For the 118,402 out-of-service conditions during the 4/2016-12/2017 Phase 1 period, 53.83% (47.01% on an adjusted basis) remained uncleared after 24 hours. To satisfy the GO 133-C/D §3.4(c) requirement, these percentages would need to drop to less than 10%.
- Wire centers upgraded with Fiber-to-the-Premises ("FTTP") capable of providing FiOS broadband services achieve better service quality performance scores in virtually every category than those without such upgrades. But Frontier lost ground in all of these metrics both in upgraded and non-upgraded wire centers over the 2018-2019 period.
- The strong relationship between the number of POTS lines in a wire center and the quality of service provided that we had identified in Phase 1 has generally persisted into Phase 2.
- The largest increases in service outages occurred in wire centers with the lowest POTS drop-off rates; the incidence of service outages increased more slowly or remained almost constant in wire centers with successively larger drop-off rates.
- Frontier service quality metrics continue to show the best results in higher-density serving areas.
- Except in those areas with the lowest population density, Frontier's response to out-of-service conditions had generally improved over the period immediately following its takeover. However, by 2018, these gains had started to reverse.
- Service quality metrics in all six Frontier Operating Areas generally improved from the April 2016 acquisition date through the end of 2017, but this pattern reversed course starting in 2018.
- The Operating Areas with the largest presence of fiber upgrades continue to exhibit the lowest number of OOS incidents and the shortest outage durations for those that do occur over the full 2016-2019 period.
- The trend in average duration of all out-of-service conditions, excluding those cleared within one hour, has been steadily increasing over the 2016-2019 Frontier ownership period.
- The largest increases in service outages continued to occur in wire centers with the lowest POTS drop-off rates.
- The Operating Areas within which most of the Verizon and Frontier FTTP upgrades have occurred have experienced the lowest number of OOS incidents and the shortest outage durations for those that do occur.

7: AT\&T CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE

- AT\&T senior management's interest in and attention to its legacy wireline ILEC operations continues to be subordinated to its wireless operations and the more recent satellite TV and video content acquisitions.
- Despite experiencing a 76.4\% drop in legacy switched access lines from 2010 through 2019, AT\&T California's gross revenues decreased by only 31.64% over the same period.
- Even when confined to only those revenue sources directly attributable to legacy switched access line services, AT\&T California legacy access line-related revenues decreased by only about 53.4\%, significantly below the 76.4\% drop in switched access line demand, because AT\&T California has raised its rates for legacy flat-rate residential service by 152.6% since the service was de-tariffed by the CPUC in 2009..
- This succession of rate increases is consistent with and in support of a "harvesting" strategy aimed at maximizing revenues from existing customers until they ultimately discontinue their service, thus allowing A\&T to maintain revenues despite a massive drop-off in demand.
- AT\&T California's response to the erosion of the market for legacy POTS services has been to raise prices, cut back on investment and maintenance, and instead "harvest" those customers that remain on its network for as long as they continue to take their service.
- The fact that AT\&T has been able to profitably implement a succession of large annual legacy services rate increases for more than a decade since the implementation of URF raises serious questions as to the Commission's conclusion in URF that competition had developed to a point where continued regulatory protection of basic residential telephone service prices is no longer required or appropriate.
- Over the past two years (2018-19), AT\&T California continued to disinvest from its network. The Company had total net after-tax income of $\$ 3.21$-billion, but paid out $\$ 3.42$-million in dividends to its parent company, AT\&T Inc -- i.e. it paid AT\&T dividends that were some $\$ 219.5$-million more than the California company had earned from its ongoing operations.
- Between 2010 and 2019, AT\&T California paid dividends to AT\&T Inc. that exceeded its total net income over the period by roughly $\$ 4.43$-billion.
- A change in the accounting procedures that AT\&T California has utilized for its ARMIS-type reports after 2017 has resulted in a roughly $\$ 5$-billion overstatement of its net Telecommunications Plant in Service for 2018 and 2019.
- Those capital investments that AT\&T has been making in its California ILEC have, for the most part, not been directed at legacy basic voice services.
- AT\&T's "harvesting" philosophy explains why AT\&T has failed to improve service quality for its POTS services at least to the point where the GO 133-C/D standards can be achieved, because the gains it can realize by raising prices and curtailing investment and maintenance far exceed any financial penalties it might suffer from persistently poor service quality.

8: FRONTIER CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE

- Having grossly overpaid Verizon for the 2016 California-Texas-Florida ("CTF") acquisition, Frontier assumed a massive debt burden that cannot be sustained.
- Most of that overpayment had been carried as "Goodwill" or "Other Intangibles" on Frontier's corporate balance sheet; by the end of 2019, all of that Goodwill and most of the Other Intangibles have been written off.
- By the end of 2019, Frontier's total debt was more than \$18.3-billion, and the Company's total debt service (interest and amortization) payments in 2019 were more than \$3.5-billion.
- Frontier's California customer base continued to dwindle, to the point where it has lost foughly 50% of the POTS access line customers it had acquired in the 2016 purchase.
- Frontier's net income declined following each successive acquisition, to the point where it has now been negative for seven consecutive quarters.
- Frontier's melt-down and ultimate Chapter 11 bankruptcy filing confirms the inescapable fact that Frontier had grossly overpaid Verizon for the CTF assets.
- Unlike AT\&T, which had raised its legacy flat-rate residential POTS rates by 152% since the onset of URF, Verizon's rates for this service had risen by only 31% as of the date of the sale to Frontier, and Frontier had not effected any rate increase since the acquisition throgh the end of 2019.
- Since acquiring the California ILEC from Verizon in 2016, Frontier continued to invest less in Gross Plant Additions than it took in retirements and depreciation accruals, resulting in a net disinvestment of $\$ 469.5$-million.

11: ILEC SERVICE QUALITY AND COMMUNITY DEMOGRAPHICS

- While we have attempted to compile the requested data on the relationships between ILEC service quality and communities' income level and racial makeup, we caution the Commission as to both the precision and usefulness of these results, and recommend that their use at this time be limited solely to considering the need for a more detailed and more granular investigation.
- The incidence of service outages for both AT\&T and Frontier appears to be somewhat lower in higher income areas, although the companies' responses to those service outages that do occur exhibit no similar income-related pattern.
- Average gross plant additions investment per access line are similar in all five quintiles for both AT\&T and Frontier, but wire centers serving higher income areas tend to have a lower rate of out-of-service incidents and greater broadband availability than their counterparts in lower income communities.
- For both AT\&T and Frontier, there is no indication that wire centers that serve relatively higher percentages of Black, Hispanic or Non-White populations exhibit more frequent incidents of service outages; moreover, as with our income analysis, there does not appear to be any observable pattern for either company associated with any of the service restoration metrics.

13: PHYSICAL AND ENVIRONMENTAL FACTORS AFFECTING ILEC SERVICE QUALITY

- Telephone service outages appear to be highly dependent upon weather conditions, specifically, the amount of precipitation in the area served.
- The strong relationship between rainfall and the rate of service outages provides a strong indication that the ILEC distribution networks are not as robust as they need to be, and clearly lack the resiliency to withstand significant weather events.
- Overall, we observed little correlation between the incidence of major wild fires and ILEC service quality. Wildfires occur mainly during hot summer and fall months when rainfall is minimal, whereas OOS incidents arise during the periods of heaviest precipitation, which occurs during late fall and winter months.

14: ILEC RESPONSES TO SERVICE OUTAGES: VoIP SERVICES

- When an ILEC legacy circuit-switched POTS customer orders some form of broadband access from the ILEC, the carrier will generally migrate the customer's voice telephone service to a VoIP offering that is delivered, together with the customer's broadband Internet access, via the digital service.
- ILEC VoIP services are provided out of the same serving wire center that had been used for legacy circuit-switched services, but the VoIP switch itself can be located anywhere on the Internet. A service interruption or outage can arise in the local distribution infrastructure or anywhere beyond that point on the ILEC's IP network.
- Most AT\&T California VoIP services are provided using DSL technology over a hybrid Fiber-to-the-Node ("FTTN") / copper distribution architecture. However, AT\&T's deployment of Fiber-to-the-Premises ("FTTP") has been increasing; by the end of 2019, some 20.7% of all AT\&T California VoIP customers were being served via FTTP.
- From 2012 through 2016, the percentage of AT\&T California VoIP access lines that had experienced out-of-service conditions in any given month was decreasing steadily, but those gains were reversed after 2016.
- The average duration of all trouble and out-of-service conditions was also shrinking up until 2016, but both metrics saw large upward spikes, with outage durations increase from less than 30 hours prior to 2017 to around 50 hours from 2017 onward.
- \quad Some 58.4% of the 3.3-million AT\&T California VoIP trouble reports created during the 2012-2019 period involved distribution plant issues.
- In wire centers where both VoIP and POTS are offered and where trouble report data is available for both services, the relative incidence of VoIP service outages was 38.7% greater than it was for POTS over the full Phase $1 / 2$ study periods.
- Frontier suffered large losses both of POTS and VoIP access lines since assuming control of the company on April 1, 2016 with POTS losses slightly higher, suggesting that the availability of FTTP-based FiOS has done little to help Frontier maintain its customer base overall.
- As of the end of December 2019, Frontier was serving only \square residential VoIP subscribers, just under 50% of the VoIP lines in service as of the takeover date. In comparison, Frontier had experienced a far greater drop-off in legacy circuit-switched access lines over that same period.
- Out of the 44,095 out-of-service reports provided for the period from April 2016 through December 2019 , only 25,089 , or about 56.9%, appear to be the result of Frontier plant or equipment issues or employee actions.

15: CPUC CONSUMER AFFAIRS BRANCH COMPLAINTS

- CAB collects geo-coded customer location information, but this is not consistent with the customer of record/account data that is contained in the ILECs' trouble report records, such as the customer's account or billing telephone number, serving wire center, or other location-specific information. Consequently, CAB complaint records cannot be directly linked to or correlated with carrier trouble tickets because CAB does not collect detailed customer account or location data.
- Less than a quarter of the total complaints received by CAB involved service outages and other service-related problems.
- The vast majority VolP-related complaints received by CAB address issues other than VoIP service quality, such as billing disputes and other customer service issues.
- Although the absolute number of service-related complaints received by CAB is extremely small when compared with the number of complaints made directly with carriers, on a relative scale more than four times as many complaints involve legacy services provided by Frontier than those furnished by AT\&T.
- CAB should undertake to collect customer account and location data as part of all service-related complaints.

16: RELATIONSHIP OF CAF II FUNDING TO POTS SERVICE QUALITY

- The data that would be necessary to support an analysis of the effects of CAF II funding on legacy circuit-switched voice telephone service is not available and, as such, we are unable to offer an assessment as to whether areas receiving CAF II support exhibit improved POTS service quality.
- Housing Units passed by the two ILECs in areas eligible for CAF II support represent a minuscule fraction of all Housing Units within each company's California operating territories.
- GO 133-C/D service quality standards and metrics are compiled at the individual wire center level, whereas eligibility for CAF II funding is determined at the individual Census Block level. Since only a small fraction of all customers served by any given wire center are located in areas receiving CAF II funding support, there is no practical means for associating CAF II support (which is focused on broadband infrastructure) and service quality for legacy circuit-switched voice services.
i

4. ILEC RESPONSES TO SERVICE OUTAGES: PHASE 2 UPDATE

Key findings addressed in this Chapter

- ETI's analysis of the condition of AT\&T and Frontier's networks in California is, among other things, based upon the approximately 7.3-million Customer Trouble Report records submitted by the two companies over the 2010-2019 Study Period.
- Our Phase 2 analysis shows a fairly consistent and pervasive degradation in both companies' service quality performance across virtually every service quality metric that we have examined.
- 16.8% of the roughly 5 -million AT\&T out-of-service conditions over the Phase 1 study period had been attributed to "Heavy Rain," "Weather," "Moisture," or "Wet Plant." Over the Phase 2 2018-2019 period, that number almost doubled, to 29.6%.
- The source of most service outages continues to be largely confined to weather-driven and other failures in outside plant, rather than to the ILECs' aging central office switches or associated equipment.
- Substitution of wireless for wireline services continues. FCC data indicate that, for California, total wireline voice service access lines in service (ILEC and non-ILEC, circuit-switched and VoIP) decreased by 6.23 -million, down 32.72%, from 19.65 -million as of the beginning of 2010 to 13.42 -million as of the end of 2018 . During the same period, the number of wireless subscriptions in California increased by 10.4-million, from 32.94 -million connections in 2010 to 43.34 -million in 2018. Overall, there were 3.9 million more wireless connections than the total population in California, which was 39.4 million people at the end of 2018.

ILEC RESPONSES TO SERVICE OUTAGES: PHASE 2 UPDATE

TABLE OF CONTENTS

Introduction: Organization of this Chapter 58
Overview of the results of the Phase 2 service quality analysis 58
Data collection and reporting pursuant to General Order 133-C and subsequent 133-D 60
Trouble Reports, in general 63
The "raw" Trouble Report data 68
The continuing collapse of the California ILEC market environment 68
Identifying long-term trends from actual month-to-month experience 73

Tables and Figures

Table 4.1: \quad Quantities of Trouble Reports and Actual Out-of-service Conditions:
AT\&T - January 2010 through December 2019
Frontier - April 2016 through December 2019
Table 4.2: \quad Quantities of Trouble Reports and Out-of-Service Conditions Adjusted to Exclude Sundays and Holidays per GO 133-C/D:

AT\&T - January 2010 through December 2019
Frontier - April 2016 through December 2019
Table 4.3: Most Common AT\&T Cause Codes and the Number of Occurrences 2010-2019

Figure 4.1: California ILECs saw a precipitous drop in demand for circuit-switched legacy voice access lines over the 2010-2019 period, only a portion of which were replaced by ILEC-provided VoIP services.

Figure 4.2: A substantial share of California ILEC residential line losses was the result of customer migrations to cable MSOs and other ILEC competitors.

Figure 4.3: ILEC business customers also migrated to competing service providers that offer SIP trunking, virtual PBX, and other VoIP services.

Figure 4.4. ILECs and CLECs have experienced switched access line losses over the 2008-2018 period, but ILEC losses have been far greater.

Figure 4.5. The vast majority of the growth in VoIP services from 2008 to 2018 has been in the non-ILEC sector.

Figure 4.6: Perhaps the largest source of the shift in demand away from ILEC and other wireline voice services in California has been the mushrooming growth in demand for wireless.

Figure 4.7. Sample chart (Average duration of AT\&T California service outages, 20102019) providing individual trend lines calculated for 2010-2017 (Phase 1), 2018-2019 (Phase 2) and for the full 2010-2019 period.

Introduction: Organization of this Chapter

This chapter provides an update to Chapter 4 in our Phase 1 Report to include trouble report and out-of-service activity for 2018 and 2019. On April 1, 2016, Verizon transferred ownership and control of its California ILEC operations, then known as Verizon California, to Frontier Communications Corporation. In our Phase 1 Report, we covered the full 2010-2017 study period by merging the service quality data for both the pre- and post-transfer periods. In this Phase 2 Report, we are limiting our analysis of Frontier to the 45 months from April 2016 through and including December 2019 under Frontier ownership. Our analysis of Frontier service quality is contained in Chapter 4F. Chapter 4A updates our analysis of AT\&T California's service quality performance over the full ten-year 2010-2019 period.

In our Phase 1 Report, we utilized regression analysis to develop long-term trends covering a variety of service quality metrics over the full 8-year Phase 1 study period. For Phase 2, we have appended the trouble report data submitted by the two ILECs pursuant to GO 133-D to the corresponding Phase 1 datasets. Using these expanded datasets, we then extended the long-term trend calculations to cover, in the case of AT\&T California, the full 2010-2019 period and, for Frontier California, the 45 -month period under Frontier ownership. We have also calculated trend lines for both companies covering the 2-year Phase 2 period from January 2018 through December 2019. The various graphs that are provided each present three separate trend lines:
(1) the Phase 1 2010-2017 trend (for AT\&T) and the 4/2016 through 12/2017 trend for Frontier;
(2) the Phase 2 2018-2019 trend for both companies; and
(3) the combined Phases $1 / 2$ trend, covering the full 2010-2019 period for AT\&T, and the 45-month 4/2016 through $12 / 2019$ period for Frontier.

Overview of the results of the Phase 2 service quality analysis

Our Phase 1 analysis identified a mixed bag of service quality improvements as well as degradations over the 8 -year Phase 1 study period, depending upon the service quality metric being examined and the category of wire centers under examination. The overall finding in Phase 2 is a fairly consistent and pervasive degradation in both companies' service quality performance across virtually every service quality metric that we have examined. The quantity of service outages per 100 access lines - the basic CPUC service quality metric embodied in GO 133-C/D - has been steadily increasing over the two-year Phase 2 study period, indicating a persistent, and disturbing, increase in the rate of service outages overall. The average durations of service outages has also been getting longer; both companies are taking more time, on average, to clear such outages, and the percentage of outages that are cleared within 24 hours - the target for which is specified in GO 133-C/D at 90% - has been dropping.

The massive POTS access line customer losses that both companies had been experiencing over the Phase 1 study period have persisted into Phase 2. Publicly available FCC Form 477 data show that, for all California ILECs, legacy switched access lines in service have dropped by 72.6%, from 14.58 -million as of the beginning of 2010 to 3.99 -million as of the end of 2018, the most recent period for which such data has been made publicly available. ${ }^{1}$ The drop-off rate among residential customers is even greater at 81.66%, from 8.21 -million as of the beginning of 2010 to 1.51 -million as of the end of 2018. ${ }^{2}$ Proprietary data provided by AT\&T and Frontier, discussed in Chapters 4A and 4F below, show generally similar conditions. Switched access line customer defections are the result of many factors - most notably competition from other voice service providers, particularly from cable television MSOs, competition from mobile wireless carriers (which include affiliates of AT\&T California and of pre-transfer Verizon California), as well as from "over-the-top" Internet applications (e.g., Skype, Vonage, Ooma and, more recently from video conferencing services like Zoom, Google Hangouts, Apple Facetime) that do not involve any type ov voice service common carrier at all, other than the underlying provider of the customer's broadband access.

This massive erosion of both ILECs' legacy customer base has, of course, led to large reductions in the amount of revenue available to support - and, of particular importance to the matter of service quality - to maintain their legacy networks. However, there is considerable evidence that the ILECs themselves are largely responsible for much of this massive loss of customers. They have maintained the same anachronistic pricing structure for these services that has persisted for more than a century - geographically narrow local calling areas and high prices for calling beyond the local zone, high surcharges for many service features like call waiting and caller ID - and, at least in the case of AT\&T California, have actually been steadily increasing rates for these legacy services in furtherance of a "harvesting" strategy aimed at inducing customers to migrate to higher-priced bundles of voice, broadband, video and, in some cases, mobile services. Many of the competing services to which former ILEC legacy service customers have switched have eliminated most of these layered charges. Mobile wireless services eliminated "long distance" toll-type charges decades ago, and regularly include in the base price a full suite of calling features without any additional surcharges. Indeed, the persistent degradation in POTS service quality that has become painfully evident underscores the utter lack of interest that ILEC management exhibits with respect to this entire line of business. This is not to suggest that the ILECs are themselves responsible for the full magnitude of customer defections, but they are certainly responsible for much of this pattern.

[^0]2. Id.

There is, to be sure, something of a chicken-and-egg situation here: Are customers abandoning legacy circuit-switched services because of the service quality degradations, or are the service quality degradations the result of the revenue losses arising from customer defections? Probably both, which points to something of a "death spiral" that, if not addressed, will ultimately lead to the demise of these services within a relatively short period of time.

One might ask, "why is this a problem?" Here's why: First, the general decline in switched access line demand is not uniform across the state. For many lower-density areas, customer defection rates are considerably smaller than when viewed on a statewide basis. Notably, business customers have retained their legacy POTS services at a higher rate than residential this despite rising prices and deteriorating service quality. Even with the large numbers of customers who have sought alternatives to legacy circuit-switched services, there are still many who continue to take this service. Second, POTS-type services are the only category of telecommunications that retains at least some vestige of regulatory protections for consumers, generally assuring some level of service availability even in low-density and hard-to-serve areas. Yet the principal competing voice services are being offered by providers operating in highly concentrated markets. There were six national wireless carriers a decade ago; that number has now dwindled to three. Most areas of California are served by only one broadband provider -typically a cable television MSO such as Comcast and Charter. Verizon's FiOS offering had been the principal competitor to the cable broadband services, but since the transfer of Verizon's California ILEC operations to Frontier, the future of FiOS in this state is at best uncertain as the future financial viability of Frontier itself is highly uncertain (see Chapter 8 below). Before allowing the death spiral to run its course, we believe it is essential that policy decisions be made as to the merit of retaining these legacy services and their underlying infrastructures as a baseline for those customers that do not perceive or that do not actually have alternatives. If these services are to be retained, the ILECs must be made to bring their level of service quality up to the full GO 133-C/D standards, because it is painfully apparent that the competitive market cannot be counted upon to produce this outcome.

Data collection and reporting pursuant to General Order 133-C and subsequent 133-D

General Order ("GO") 133-C was adopted by Decision (D.) 09-07-019 effective as of July 9, 2009, in Rulemaking (R.) 02-12-004, to become effective for purposes of service quality reporting as of January 1, 2010. ${ }^{3}$ GO 133-C, in relevant part, requires that all "facilities-based URF [Uniform Regulatory Framework ${ }^{4}$] Carriers with 5,000 or more customers" report various service quality performance metrics on a monthly basis to be submitted quarterly to the Commission. Both Pacific Bell (d/b/a AT\&T California, hereinafter "AT\&T") and Frontier California
3. Order Instituting Rulemaking into the Service Quality Standards for All Telecommunications Carriers and Revisions to General Order 133-B, R. 02-12-004, D. 09-07-019 issued and effective as of July 9, 2009.
4. Order Instituting Rulemaking on the Commission's Own Motion to Assess and Revise the Regulation of Telecommunications Utilities, R.05-04-005, Opinion, D.06-08-030, August 24, 2006.
(formerly Verizon California, hereinafter "Frontier"), are "facilities-based URF Carriers with 5,000 or more customers" and are thus subject to this requirement. Under the provisions of GO-133-C §§ 3.3(c) and 3.4(c), both AT\&T and Frontier (Verizon) have been obligated to provide reports as well as the underlying ("raw") trouble ticket data on all customer Trouble Reports and Out-of-Service records occurring on and after January 1, 2010. ${ }^{5}$ In August 2016, the CPUC, by D.16-08-021 in R.11-12-001, adopted GO 133-D as a revision to the prior version of the same General Order. ${ }^{6}$

GO 133-D §3.3. Customer Trouble Reports - Applies to ... facilities-based URF Carriers with 5,000 or more customers ... Trouble reports apply to residential and small business customers (those that purchase five or fewer lines).
a. Description. Service affecting, and out of service trouble reports, from customers and users of telephone service relating to dissatisfaction with telephone company services. Reports received will be counted and related to the total working lines within the reporting unit in terms of reports per 100 lines.
b. Measurement. Customer trouble reports received by the utility will be counted monthly and related to the total working lines within a reporting unit.
c. Minimum Standard Reporting Level. Report number of trouble reports per 100 working lines (excluding terminal equipment reports). ... Six trouble reports per 100 working lines for reporting units with 3,000 or more working lines, eight reports per 100 working lines for reporting units with 1,001-2,999 working lines, and 10 reports per 100 working lines for reporting units with 1,000 or fewer working lines.
d. Reporting Unit. Exchange or wire center, whichever is smaller. A wire center with fewer than 100 lines should be combined with other central offices within the same location. A remote switching unit with fewer than 100 lines should also be added to its host switch. URF CLECs that do not have exchanges or wire centers shall report at the smallest reporting unit. All reporting carriers shall submit the raw data included in the report.
e. Reporting Frequency. Compiled monthly, reported quarterly.

GO 133-D §3.4. Out of Service Repair Intervals - Applies to ... facilities-based
URF Carriers with 5,000 or more customers
a. Description. A measure of the average interval, in hours and minutes from the time of the reporting carrier's receipt of the out of service trouble report to the time service is restored for residential and small business customers.
5. G.O. 133-C, §§ $2,3$.
6. Order Instituting Rulemaking to Evaluate Telecommunications Corporations Service Quality Performance and Consider Modification to Service Quality Rules, R. 11-12-001, Decision Adopting General Order 133-D, D.16-08-021 August 18, 2016.
b. Measurement. Commitment is measured by taking the total number of the repair tickets restored within less than 24 hours divided by the total outage report tickets. In addition, the system average outage duration is measured by summing each repair interval, expressed in clock hours and minutes, between the time the customer called to report loss of service and when the customer regains dial tone, divided by the total outage report tickets. These measurements include only residential and small business customer tickets.

Carriers shall submit both the adjusted and unadjusted out of service data.
The adjusted measurements exclude Sundays, federal holidays and repair tickets when maintenance is delayed due to circumstances beyond the carrier's control. Typical reasons for delay include, but are not limited to: outage caused by cable theft, third-party cable cut, lack of premise access when a problem is isolated to that location, absence of customer support to test facilities, or customer's requested appointment. Deferred maintenance or lack of available spares are not circumstances beyond a carrier's control. Changed appointments shall be reported separately by identifying the number of such appointments and the time, in hours and minutes, associated with these appointments.

A catastrophic event, an event where there is a declaration of a state of emergency by a federal or state authority, and a widespread service outage (an outage affecting at least 3% of the carrier's customers in the state) are circumstances beyond the carrier's control. A catastrophic event ends when the trouble ticket level returns to the average level three months prior to the catastrophic event. The average level is calculated by summing the actual number of out-of-service tickets for residential and small business (5 lines or less) customers for the three consecutive calendar months that did not have catastrophic events prior to the declared State of Emergency divided by three.

When quarterly reporting includes a delay for one or more months or if a catastrophic event or widespread outages affects a carrier's adjusted reporting, the carrier shall provide supporting information as to why the month should be excluded and work papers which explain the event, the date(s), the areas affected, the total number of residential and small business lines affected, and how the adjusted figure was calculated.
c. Minimum Standard Reporting Level. 90% of all out of service trouble reports within 24 hours is the set minimum standard. Both the percentage of outages meeting the 24 -hour standard and the actual system-wide average outage duration should be reported.
d. Reporting Unit. Reporting is at the state-wide level. However, carriers shall submit with the report the underlying data at the exchange or wire center level, whichever is smaller, that supports the information being reported. A wire center with fewer than 100 lines should be combined with other central offices within the same location. A remote switching unit with fewer than 100 lines should also be added to its host switch. URF CLECs that do not have exchanges or wire centers shall report at the smallest reporting unit. All reporting carriers shall submit the raw data included in the report.
e. Reporting Frequency. Compiled monthly and reported quarterly for those reporting units.

As it pertains to the subject matter of this Network Examination, GO 133-D §3.4(b), Measurement, was revised to include an expanded enumeration of causes resulting in Out-ofService conditions that are beyond management's control. A new $\S 9$ has been added setting forth fines to be imposed upon carriers under certain protracted or excessive Out-of-Service conditions other than those caused by factors beyond management's control. GO-133-D became effective as of August 18, 2016, except for $\S 9$ (fines), which became effective as of January 1, 2017. Since at
least 6 years and 7 months out of the total of the 10 years under examination here were subject to GO-133-C, the analysis provided here is based upon the reporting requirements of that earlier version of the General Order. The nearly 7.3-million individual Trouble Report data records submitted by AT\&T and by post-acquisition Frontier over the period have provided a solid basis for ETI's comprehensive assessment of the condition of the ILECs' California networks and their performance in maintaining service quality and in responding to service problems.

Trouble Reports, in general

A Trouble Report (sometimes referred to as a Trouble Ticket) is generally created when a customer contacts the telephone company to report a service problem. Service problems arise from any number of conditions, many of which fall outside of the responsibility of the ILEC or can be easily resolved by means of a help desk or technical support function. For example, a customer might be encountering difficulty using a custom calling feature such as three-way calling, voice mail, or caller id (where the calling number is displayed on a device owned by the customer and connected to the ILEC network). Although a Trouble Ticket may be created in such situations, many may be resolved quickly by providing assistance to the customer as to how the feature operates and how to use it.

GO 133-C/D established minimum standards and reporting levels for service on the network side of the demarcation. Not all network problems reported by a customer constitute out-ofservice conditions. For example, the customer may report noise on the line, but is still able to originate and receive calls. For those that do involve an out-of-service condition, the Trouble Report record includes an "out-of-service indicator" as well as the date/time when the outage is reported and the date/time when it is ultimately cleared. From these date/time stamps, we are able to create a range of metrics regarding the duration of the out-of-service condition. In Phase 1 of this study, we examined all AT\&T California and all Verizon/Frontier California Trouble Report records over the 2010-2017 study period. For Phase 2, we have undertaken a similar examination of these records for the Phase $22018-2019$ period. However, as noted above, for Frontier, we have limited the Phase 2 analysis to the post-acquisition period, from April 2016 through December 2019. Table 4.1 below summarizes the quantities of trouble report records of various types that were included in our Phase 1 and Phase 2 analyses:

Table 4.1

QUANTITIES OF TROUBLE REPORTS AND ACTUAL OUT-OF-SERVICE CONDITIONS AT\&T - JANUARY 2010 THROUGH DECEMBER 2019 FRONTIER - APRIL 2016 THROUGH DECEMBER 2019

	AT\&T			Frontier		
Condition	2010-2017	2018-2019	2010-2019	2016-2017	2018-2019	2016-2019
Trouble Reports - all types	6,219,742	741,581	6,961,323	160,590	145,561	306,151
Out-of-Service-all types	5,001,270	573,581	5,574,851	118,402	112,030	230,432
Out-of-Service-less than one (1) hour	328,357	26,544	354,901	978	507	1,485
Out-of-Service-more than one (1) hour	4,672,913	547,037	5,219,950	117,424	111,523	228,947
Out-of-Service-morethan6hours	3,814,579	437,937	4,252,516	101,110	98,152	199,262
Out-of-Service-morethan12hours	3,541,959	410,553	3,952,512	92,927	91,130	184,057
Out-of-Service-morethan24hours	2,480,593	320,567	2,801,160	63,737	64,811	128,548
Out-of-Service-morethan1week	272,465	62,412	334,877	7,330	12,694	20,024

NOTES: (1) AT\&T did not provide records of non-OOS Trouble Reports in 2010
(2) Some post-acquisition Frontier data may not include non-OOS Trouble Reports

Table 4.1 provides counts for all types of Trouble Reports and Out-of-Service conditions. However, GO-133-C/D allows for certain adjustments and exclusions where the OOS condition, or some portion of it, is considered to be beyond management's control.

One such situation arises where the outage commences, ends, or includes a Sunday or a legal holiday. For example, if an outage is reported at 10:00 am on a Friday and is cleared at 3:00 pm the following Monday, the total duration of the outage (77 hours) is adjusted to exclude the 24 Sunday hours, putting the "official" outage duration for this example at 53 hours (i.e., 77-24). From the customer's perspective, however, the duration was 77 hours, not 53. ETI has analyzed and organized the OOS metrics using both the "actual" and "CPUC" or "adjusted" durations. Table 4.2 provides OOS counts based upon the adjusted "CPUC" durations. Notably, and as detailed in Chapters 4A and 4F below, even after removing these "excluded" Sunday/Holiday hours, both ILECs still fell far short of meeting the GO 133-C/D requirement that 90% of outages be cleared within 24 hours. Quarterly summaries are provided in Tables 4A. 9 (for AT\&T) and 4F. 7 (for Frontier). Wire center-level details are provided in Tables 4A. 2 to 4A. 6 (for AT\&T) and 4F. 2 to 4F. 6 (for Frontier).

Table 4.2

QUANTITIES OF TROUBLE REPORTS AND OUT-OF-SERVICE CONDITIONS ADJUSTED TO EXCLUDE SUNDAYS AND HOLIDAYS PER GO 133-C/D AT\&T - JANUARY 2010 THROUGH DECEMBER 2019 FRONTIER - APRIL 2016 THROUGH DECEMBER 2019

Condition	AT\&T			Frontier		
	2010-2017	2018-2019	2010-2019	2016-2017	2018-2019	2016-2019
Trouble Reports - all types	6,219,742	741,581	6,961,323	124,185	181,966	306,151
Out-of-Service-all types	5,001,270	573,581	5,574,851	91,626	138,806	230,432
Excluded due to cause beyond management's control	830,780	157,676	988,456	3,247	24,979	28,226
Out-of-service conditions within management's control	4,170,490	415,905	4,586,395	88,379	113,827	202,206
Out-of-Service-less than one (1) hour	31,805	334,437	366,242	706	852	1,558
Out-of-Service-more than one (1) hour	3,852,439	386,546	4,238,985	90,920	111,532	202,452
Out-of-Service-more than six (6) hours	3,101,288	304,883	3,406,171	78,349	94,440	172,789
Out-of-Service-more than twelve (12) hours	2,873,377	210,920	3,084,297	71,936	83,587	155,523
Out-of-Service-more than twenty-four (24) hours	1,954,453	101,966	2,056,419	49,155	47,521	96,676
Out-of-Service-more than one (1) week	194,104	-23,529	170,575	3,480	6,578	10,058
NOTES: (1) AT\&T did not provide records of non-OOS Trouble Reports in 2010 (2) Some post-acquisition Frontier data may not include non-OOS Trouble Reports						

In addition to the Sunday/Holiday adjustments, certain out-of-service conditions "when maintenance is delayed due to circumstances beyond the carrier's control," such as "outage caused by cable theft, third-party cable cut, lack of premise access when a problem is isolated to that location, absence of customer support to test facilities, or customer's requested appointment" have also been treated as "excluded" even though, from the customer's perspective, the service is nevertheless not functioning. ${ }^{7}$ ETI does not believe that it is appropriate to entirely exclude all instances where the customer has requested an appointment date/time at the customer's convenience. Instead, the delay in the ultimate restoration of service attributable to the additional time needed to satisfy the customer's request for an appointment should be adjusted out of the total out-of-service duration; ETI has been advised that such an adjustment is already reflected in the "CPUC Duration" calculation provided on the raw Trouble Report data.

Each Trouble Report record also includes a "Cause Code." Notably, 16.8% of the roughly 5million AT\&T out-of-service conditions over the Phase 1 study period had been attributed to "Heavy Rain," "Weather," "Moisture," or "Wet Plant." Over the Phase 2 2018-2019 period, that number almost doubled, to 29.6%. The Phase 1 data indicated that more than 40% of all out-of-
service conditions had been attributed to problems with "ILEC Plant or Equipment," although there is no detail as to exactly what type(s) of ILEC Plant and Equipment are at fault. The corresponding figure for 2018-2019 is only 7.62%, suggesting a possible refinement in the fault reporting process.
16.8\% of the roughly 5-million AT\&T out-of-service conditions over the Phase 1 study period had been attributed to "Heavy Rain," "Weather," "Moisture," or "Wet Plant." Over the Phase 2 2018-2019 period, that number almost doubled, to 29.6%.

The AT\&T Cause Codes that arise most frequently are summarized in Table 4.3. In determining whether an individual record should be "excluded," ETI has relied upon the "Excluded" flag rather than the Cause Code.

Table 4.3

MOST COMMON AT\&T CAUSE CODES
AND THE NUMBER OF OCCURRENCES 2010-2019

Cause code and description		Occurrences		
		2010-2017	2018-2019	2010-2019
300	ILEC Plant or Equipment	2,089,225	43,679	2,132,904
600	Unknown - Trouble condition cannot be determined	1,367,019	114,419	1,481,438
421	Heavy rain	474,887	54,070	528,957
310	Overload - excessive demand	303,759	3,362	307,121
304	Plant Conditioning	95,253	97,013	192,266
400	Weather	128,518	52,266	180,784
319	Wet plant not storm-related	124,815	31,878	156,693
420	Moisture	112,706	31,345	144,051
322	Out of Adjustment	109,881	29,185	139,066
100	Caused or overlooked by AT\&T Employee	113,706	14,766	128,472
541	Out of Adjustment	95,929	14,696	110,625
204	Customer request to move or remove equipment	77,694	18,525	96,219
120	Outage caused by ILEC employee during outside plant construction	65,759	18,409	84,168
550	Damage to plant caused by animals or insects	56,697	8,879	65,576
302	AT\&T Plant or Equipment Missing/Removed	29,006	94,109	123,115
NOTE: AT\&T did not provide records of non-OOS Trouble Reports in 2010				

It appears that all of these most common Cause Codes refer to failure in outside plant and/or circuit equipment, not to central office switches. In Chapter 3 of our Phase 1 Report, we noted that both carriers' central office switch inventories are quite ancient, some in the 20-30 year old range. Despite their age and reliance upon generations-old computer technology, these ancient switches do not appear to be the source of many, if any, recorded service outages.

Following the exclusions of trouble conditions deemed beyond the utility's control, the AT\&T 2010-2019 dataset consisted of 4,586,395 remaining out-of-service records and 202,206 for postacquisition (2016-2019) Frontier.

The "raw" Trouble Report data

As noted, GO 133-C/D requires the URF ILECs to provide the underlying ("raw") Trouble Report data for every service-related contact initiated by a customer. This "raw data" is used by the ILEC to prepare the quarterly Trouble and Out-of-Service reports that are required by GO 133-C/D. Over the period January 2010 through and including December 31, 2019, AT\&T provided the Commission with approximately 6.96-million individual Trouble Report records, roughly 5.57-million of which were associated with Out-of Service ("OOS") conditions of varying lengths. In the 45 -month period since the transfer of Verizon California to Frontier on April 1, 2016, Frontier California provided the Commission with 306,151 out-of-service records covering the period April 2016 through December 2019.

The continuing collapse of the California ILEC market environment

Both AT\&T and Frontier provide basic local telephone service across extensive geographic footprints throughout California. AT\&T operates 615 wire centers, and provides service in 51 of the State's 58 counties. Frontier operates some 270 wire centers, and provides service in 26 counties. Both companies have experienced a massive erosion of the legacy circuit-switched local "Plain Old Telephone Service" ("POTS") customer base over the ten year period covered by this Study. This erosion has been driven by a number of factors, including actions of the two companies and their affiliates themselves.

Abstract

Substitution of wireless for wireline services continues. FCC data indicate that, for California, total wireline voice service access lines in service (ILEC and non-ILEC, circuit-switched and VoIP) decreased by 6.23-million, down 32.72%, from 19.65 -million as of the beginning of 2010 to 13.42 -million as of the end of 2018, while the number of wireless subscriptions increased by 10.4-million, from 32.94-million connections in 2010 to 43.34 -million in 2018. Overall, there were 3.9 million more wireless connections than the 39.4 million California population, which was as of the end of 2018.

Figures 4.1 through 4.6 illustrate these demand shifts and erosions for California statewide over the period 2008-2018, based upon published FCC data, ${ }^{8}$ which covers all California service providers. AT\&T and Verizon/Frontier combined constitute the overwhelming share of ILECprovided switched access service in California. Figure 4.1 shows the change in total ILEC circuit-switched (POTS) voice lines together with the growth of interconnected VoIP subscriptions (ILEC and non-ILEC) over the period. Although the 72.61% drop in ILEC POTS lines between 2010 and 2018 has been slightly offset by the increase in ILEC-provided VoIP services, overall ILEC circuit-switched plus VoIP lines decreased by 62.43\% over the 2008-2018 time frame. Figures 4.2 and 4.3 show ILEC legacy service losses to non-ILEC competitor-provided services, separately for residential and business customers, respectively. Residential ILEC POTS lines decreased by 81.66%; whereas business POTS lines dropped by only 60.93%. Figure 4.4 plots California ILEC and CLEC switched access line losses over the 2008-2018 period. While both types of carriers have seen an erosion of demand for circuit-switched services, ILEC losses have been far greater. ${ }^{9}$ Figure 4.5 compares the growth in VoIP services for California ILECs (1.57-million lines) and CLECs (4.14-million lines).. As the graph demonstrates, the vast majority (more than 75%) of the growth in VoIP services has come from the non-ILEC sector.

Figure 4.6 illustrates how the demand for voice services has shifted away from wireline to wireless. Wireless lines in California increased by 10.40 -million, up 31.57%, from 32.94 -million connections in 2010 to 43.34-million in 2018. The State's total population at the end of 2018 was 39.4 -million - i.e., 3.94 -million more wireless phones than people (including infants and newborns). Over the same time period, total wireline voice service demand saw a 6.23 -million decrease, down 32.72%, from 19.65-million in 2010 to 13.42-million in 2018.

[^1]

Figure 4.1. California ILECs saw a precipitous drop in demand for circuit-switched legacy voice access lines over the 2010-2019 period, only a portion of which were replaced by ILEC-provided VoIP services.

Figure 4.2. A substantial share of California ILEC residential line losses was the result of customer migrations to cable MSOs and other ILEC competitors.

Figure 4.3. ILEC business customers also migrated to competing service providers that offer SIP trunking, virtual PBX, and other VoIP services.

Figure 4.4. ILECs and CLECs have experienced switched access line losses over the 2008-2018 period, but ILEC losses have been far greater.

Figure 4.5. The vast majority of the growth in VoIP services from 2008 to 2018 has been in the non-ILEC sector.

Figure 4.6. Perhaps the largest source of the shift in demand away from ILEC and other wireline voice services in California has been the mushrooming growth in demand for wireless.

Identifying long-term trends from actual month-to-month experience

As noted, there is considerable month-to-month variation across all of AT\&T's 615 California wire centers, and for AT\&T California overall, in the number of trouble reports received and out-of-service situations reported. As an example, Figure 4.7 below is a reproduction of Figure 4A. 4 which appears in Chapter 4A below. It plots the average duration of AT\&T service outages on a quarterly basis from the first quarter of 2010 through the fourth quarter of 2019. As is evident, there is considerable variation in this metric from one period to the next. For this reason, inspection of individual quarterly data over an extended period of time is not a useful means for identifying the long-term trend in this or other service quality metrics.

Figure 4.7. Sample chart (Average duration of AT\&T California service outages, 2010-2019) providing individual trend lines calculated for 2010-2017 (Phase 1), 2018-2019 (Phase 2) and for the full 2010-2019 period.

In this example, the period with the highest average duration occurred in the first quarter of 2011, yet the long-term trend in duration is in the upward direction. A simple comparison of individual quarters in the series without considering any of the intervening values could lead to
an erroneous conclusion that the incidence of OOS had actually improved over the full study period. It is possible, however, to extract a long-term trend from data that exhibits considerable variation from period to period, as is the case here. This is accomplished by using statistical techniques known as linear regression analysis that can calculate a long-term trend by mathematically "fitting a line or curve" to the individual data points in the series, in effect, smoothing out the period-to-period variation so as to permit the observation of a long-term trend over the entire period. For the charts provided in this Phase 2 Report, we have calculated three separate trend lines: (1) the solid red line is calculated over the entire 10-year 2010-2019 combined Phase 1/Phase 2 study period; (2) the dashed green line is calculated over the original 2010-2017 Phase 1 study period, and is identical to the trend lines provided in our Phase 1 Report; and (3) the dashed purple line is calculated over the 2018-2019 Phase 2 study period.

In this example, there is a significant change in the slope of the trend line as between the Phase 1 and Phase 2 study periods. While the average duration of AT\&T service outages had been trending upward over the 2010-2017 period, the rate of increase after 2017, as captured graphically in the steeper upward slope of the 2018-2019 trend line, has clearly been accelerating. The discontinuity between the Phase 1 and Phase 2 trend lines arises because each is calculated separately based upon data for the two separate (Phase 1 and Phase 2) periods.

We have adopted this graphic format in all of the updated charts in Chapters 4, 4A and 4F so as to provide a clear visual indication as to whether each of the studied service quality metrics is showing improvement or degradation over the past two years.

ECONOMICS AND

$4 \|^{\text {SERVICE QUALITY ANALYSIS UPDATE: }}$ AT\&T CALIFORNIA

Principal observations and takeaways

- AT\&T California's performance in 2018-2019 has deteriorated relative to where it had been in the 2010-2017 Phase 1 study period, and its performance with respect to nearly every one of the service quality metrics that we had examined in Phase 1 has deviated further from the Commission's GO 133-D service quality objectives and standards.
- The greatest demand drop-offs for legacy POTS services continues to be experienced in the largest wire centers.
- The trend in average duration of all out-of-service conditions over one hour had been steadily increasing over the Phase 1 study period, and spiked further in 2018-2019. By the end of 2019, it took AT\&T 67\% longer to restore service than it took in 2010.
- Over the 2010-2019 study period, AT\&T's average duration for service outages exceeding 24 hours has increased by roughly 67%.
- During 2018-2019, 55.9\% of the 573,591 out-of-service conditions (38.2\% on an "adjusted" basis) remained uncleared after 24 hours, up from the corresponding 49.6\% / 36.7% levels during the 2010-2017 period. To satisfy the GO 133-C/D §3.4(c) requirement, these percentages would need to drop to less than 10%.
- On an adjusted basis, the number of days required for AT\&T to clear 90% of all out-of-service conditions was increasing at a faster rate over the 2018-2019 period than over the longer Phase 1 period. Over the eight years from 2010Q1 through 2017Q4, the number of days required for AT\&T to clear 90% of service outages increased at an annual rate of 3.37%, from 4.10 days to 5.30 days. Over the next 24 months, from 2017Q4 to 2019Q4, the days to clear 90% jumped at an annual rate of 13.77%, from 5.30 to 6.86 .
- There continues to be little effective competition for POTS services. If the market were sufficiently competitive, the greatest loss of demand would occur in wire centers exhibiting the poorest service quality. In fact, the greatest drop-off in demand has occurred in wire centers with the best service quality records.
- Performance across most service quality metrics is better in wire centers that have been upgraded with fiber optic distribution facilities, in those serving higher-density urban and suburban communities, in larger wire centers, and in those with the largest losses of customers to competitors. But in almost every category, performance has significantly deteriorated over the 2018-2019 period.
- Wire centers upgraded with fiber to support broadband services achieve better service quality performance scores in every category - but in 2018-2019, service quality in both types of wire centers was decidedly inferior to what had been achieved during the Phase 1 2010-2017 period. Based upon Phase 2 trend lines, AT\&T needed only 1.15 days to clear 90% of service outages in wire centers with fiber optic facilities as of the end of 2019; for non-upgraded wire centers, it took 2.43 days to clear 90%. The corresponding figures as of the end of Phase 1 (4Q2017) were 1.10 and 1.86.
- The strong relationship between the number of POTS lines in a wire center and the quality of service provided has persisted into the 2018-2019 period, with the number and the rate of increase in OOS per 100 POTS lines continuing to be lowest in the very largest (over 20,000 lines) wire centers. However, service quality has deteriorated in all line-size categories since 2017.
- Wire centers that had experienced the lowest rate of POTS line losses - less than 50% over the study period - saw the largest increase in service outages; for those with successively larger line loss percentages, the incidence of service outages increased more slowly or remained almost constant over the study period. But performance in nearly all of the service quality metrics we studied deteriorated after 2017.
- Except in areas with the highest population density, AT\&T's response to out-of-service conditions has generally deteriorated over the study period. That deterioration appears to have accelerated for all population density categories in the 2018-2019 period.
- Of the five AT\&T maintenance (AFO) districts, LA/Bakersfield and San Gabriel had shown significant improvements in most OOS metrics during the Phase 1 study period. However, even those improvements appear to have largely reversed in 2018-2019.
- Since the bulk of AT\&T's investments in its ILEC network have been aimed at upgrades that support broadband services, the AFO Districts with the smallest percentage of such upgrades have continued to experience substantial degradations in service quality into the 2018-2019 period. This result further underscores the pressing need for infrastructure investment irrespective of AT\&T's pursuit of the broadband market.

SERVICE QUALITY ANALYSIS UPDATE:
 AT\&T CALIFORNIA

TABLE OF CONTENTS

Phase 2 2018-2019 Update to the AT\&T California Service Quality analysis 82
Access line demand continues to plummet 82
Trouble Reports and POTS Lines in Service - a more granular perspective 85
AT\&T Service Quality performance 103
Focus upon 2018-2019 results 103
Out-of-Service conditions overall 103
Out-of-service conditions cleared within 24 hours 110
AT\&T has continued to increase rates for its legacy services while service quality continues to be degraded 134
Effects of geographic and other wire center attributes upon performance results 136
Fiber optic upgraded wire centers 153
Wire Center Size 159
Access Line Loss 165
Urban/Suburban/Rural 173
ILEC Organizational Assignment 179
Summary 185

Tables and Figures

Table 4A.1: \quad AT\&T California Drop-off in POTS Demand at Wire Centers of Varying Sizes January 2010 - December 201983
Table 4A.2: AT\&T California Out-of-Service Over 24 Hours' Duration per 100 Pots Lines in Service - 20 Poorest Performing and 10 Best Performing Wire Centers 2016-2019 86
Table 4A.3: AT\&T California Average Out-of-Service Duration - 20 Poorest Performing and 10 Best Performing Wire Centers 2016-2019 87
Table 4A.4: AT\&T California Percent Out-of-Service Cleared Within 24 Hours - 20
Poorest Performing and 10 Best Performing Wire Centers 2016-2019 88
Table 4A.5: AT\&T California Days Required to Clear 90\% of Out-of-Service Conditions - 20 Poorest Performing and 10 Best Performing Wire Centers 2016-2019 89
Table 4A.6: AT\&T California Trouble Report and Out-of-Service Data for 2016-2019 90
Table 4A.7: AT\&T California Quantities of Actual and Adjusted ("CPUC") Out-of- Service Conditions, January 2010 Through December 2019 110
Table 4A.8(a) AT\&T California Wire Center Performance Trends Over the Period Q2010-4Q2019 114
Table 4A.8(b) AT\&T California Wire Center Performance Trends Over the Period 1Q2018-4Q2019 122
Table 4A.9: AT\&T California Percentages of Actual and Adjusted ("CPUC") Out-of- Service Conditions Cleared Within 24 Hours and Days Required to Clear 90\% 130
Table 4A.10: AT\&T California Basic Residential (POTS) Access Line Service Rate Increase History 2006-2020 135
Table 4A.11: AT\&T California Wire Center Attribute Dimensions and Categories 137
Table 4A.12: AT\&T California Wire Center Attribute Classifications 138
Table 4A.13: Summary of AT\&T Attribute Dimension Graphs 153
Table 4A.14: AT\&T California Classifications of Wire Centers by POTS Lines in Service as of January 2010 159
Table 4A.15: AT\&T California Classifications of Wire Centers by POTS Line Loss Percentage January 2010 Through December 2019 166

Table 4A.16: AT\&T California Field Operations West (AFO) Districts Total Wire Centers and Wire Centers Upgraded with Fiber to Support Broadband Services as of December 2019

Figure 4A.1: The decrease in the number of AT\&T California out-of-service Incidents has roughly corresponded with the drop-off in access lines in service over the 2010-2019 period

Figure 4A.2: Over the 2010-2017 period, the trend of AT\&T California out-of-service incidents per 100 access lines (actual) had been increasing; for 2018-2019, that trend experienced a further increase.

Figure 4A.3: The rate of increase in the average duration of AT\&T California out-ofservice incidents lasting more than one hour (actual) grew even larger in the 2018-2019 period

Figure 4A.4: The average duration of all AT\&T California out-of-service incidents (actual) saw a significant jump during the 2018-2019 Phase 2 study period.

Figure 4A.5: The average duration of all AT\&T California out-of-service incidents over 24 hours (actual) increased further over the 2018-2019 Phase 2 study period. 107

Figure 4A.6: The average duration of all AT\&T California out-of-service incidents (adjusted) saw a significant jump during the 2018-2019 Phase 2 period.

Figure 4A.7: The average duration of all AT\&T California out-of-service incidents over 24 hours (adjusted) increased further over the 2018-2019 Phase 2 period.

Figure 4A. $8 \quad 2018$-2019 saw a 39% increase in the rate of AT\&T California out-of-service conditions over 24 hours (actual), as compared with about 12% over the 2010-2017 Phase 1 study period.

Figure 4A.9: AT\&T California had not come even close to achieving the GO 133-CD §3.4(c) goal of 90% of all OOS cleared within 24 hours (actual) during the Phase 1 study period, and that metric saw a significant degradation in 20182019.

Figure 4A.10: The percentage of all AT\&T California OOS cleared within 24 hours (adjusted) has consistently fallen far short of meeting the GO 133-C/D §3.4(c) 90\% cleared within 24 hours standard, and got a lot lower in 2018-2019.

Figure 4A.11: The number of days required to clear 90% of AT\&T California out-ofservice incidents (actual) increased considerably in 2018-2019.

Figure 4A.12: The number of days required to clear 90% of AT\&T California out-ofservice incidents (adjusted) also increased in 2018-2019.

Figure 4A.13: Wire centers that had not been upgraded with fiber optic facilities experienced further degradation in the number of out-of-service incidents per 100 access lines (actual) in 2018-2019.

Figure 4A.14: The average duration for OOS over 24 hours (actual) in wire centers that had not been upgraded with fiber optic facilities grew even longer in 2018-2019. 136

Figure 4A.15: The percentage of all OOS cleared within 24 hours (actual) dropped considerably both in fiber and non-fiber wire centers in 2018-2019.

Figure 4A.16: It took AT\&T California more days to clear 90% of outages (actual) both in fiber and non-fiber wire centers in 2018-2019.

Figure 4A.17: The largest wire centers generally experienced the lowest out-of-service rate per 100 lines in service (actual), but the outage rate increased for all wire center size categories in 2018-2019.

Figure 4A.18: The largest wire centers generally exhibited the shortest average duration of OOS over 24 hours (actual); the two largest size categories saw some improvement in 2018-2019, while the two smallest size categories experienced even longer durations than in the Phase 1 study period.

Figure 4A.19: The largest wire centers generally exhibited the highest percentage of all OOS cleared within 24 hours (actual), but all five size categories saw significant decreases in this metric in 2018-2019.

Figure 4A.20: The largest wire centers generally required the fewest number of days to clear 90% of all out-of-service incidents (actual), but the days -to-clear metric increased across all size categories in 2018-2019.

Figure 4A.21: Companywide, AT\&T California experienced a net loss of 78.6% of its POTS access lines in service over the 2010-2019 period.

Figure 4A.22: AT\&T California wire centers with the fewest POTS line losses have experienced the greatest increase in OOS per 100 lines in service (actual), a disparity that became even greater in 2018-2019.

Figure 4A.23: AT\&T California wire centers with the largest POTS line losses had been experiencing the shortest average durations of OOS over 24 hours (actual) in the Phase 1 study period, but durations in this category saw a huge spike in the 2018-2019 period.

Figure 4A.24: AT\&T California wire centers with the largest POTS line losses are experiencing the highest percentages of all OOS cleared within 24 hours (actual), but this metric worsened for all except the smallest line loss category in 2018-2019.

Figure 4A.25: AT\&T California wire centers with the largest POTS lines losses requires the fewest number of days to clear 90% of all OOS (actual), but days-toclear 90% increased for all line loss categories in 2018-2019.

Figure 4A.26: AT\&T California. OOS per 100 lines in service (actual) had been increasing except in the highest density categories, and escalated further in all but one density category in 2018-2019.

Figure 4A.27: AT\&T California. average duration of OOS over 24 hours (actual) had increased the most in areas with the lowest population density, and saw further increases in 2018-2019 across all density categories

Figure 4A.28: AT\&T California. pct of all OOS cleared within 24 hours (actual) had remained stable except in areas with the highest population density, but saw decreases in all five density categories in 2018-2019.

Figure 4A.29: The number of days required for AT\&T California. to clear 90% of all OOS (actual) has increased in all five density categories over the entire 2010-2019 period.

Figure 4A.30: AT\&T California. OOS per 100 lines in service (actual) varied inversely with the type of area being supported by each AFO district - lowest in the largest metro areas, but saw large increases in the San Gabriel and Southern California districts.

Figure 4A.31: The average duration of OOS over 24 hours (actual) is longest - and had been increasing - in AT\&T California AFO districts covering non-metro and rural areas, and also saw large increases in the San Gabriel and Southern California districts.

Figure 4A.32: The percentages of OOS to be cleared within 24 hours (actual) decreased in all five AFO districts in 201-2019.

Figure 4A.33: The number of days required to clear 90% of all OOS (actual) increased in all five AFO districts in 2018-2019.

Phase 2 2018-2019 update to the AT\&T California Service Quality analysis

This chapter updates Chapter 4A in our Phase 1 Report to include AT\&T California trouble report records for 2018-2019 that have been submitted by the company as required pursuant to GO 133-D. As we discuss in detail below, this updated analysis indicates that, in general, AT\&T California's performance in 2018-2019 has deteriorated relative to where it had been in the 20102017 Phase 1 study period. The company's performance with respect to nearly every one of the service quality metrics that we had examined in Phase 1 has deviated further from the Commission's GO 133-D service quality objectives and standards. AT\&T California continued to account for a successively smaller portion of its parent company's operations, a fact that appears to be fully reflected in the low priority that AT\&T California has been receiving both with respect to capital investment and senior management attention over the past several years.

Access line demand continues to plummet

In the first part of this Chapter 4, we updated the California statewide ILEC demand over the 2008-2018 period based upon published and publicly available FCC data. The GO 133-C/D data routinely submitted by AT\&T California to the CPUC indicates that AT\&T's legacy circuitswitched POTS access line demand drop-off rate is similar to the industry-wide results for California being compiled by the FCC. This downward trend persisted into 2018 and 2019. In the two years from December 2017 to December 2019, the company lost 565,537 POTS access lines, going from 2,245,171 in December 2017 to 1,679,638 in December 2019. For the entire 10-year period from January 2010 through December 2019, total AT\&T California POTS access lines in service experienced a 79.1% decrease, dropping from 8,035,134 in January 2010 to 1,679,638 in December 2019. The calculated long-term trend in total out-of-service incidents dropped from 322,075 in the first quarter of 2010 to 68,409 in the fourth quarter of 2019, a similar decrease of 78.76%. Figure 4A. 1 plots AT\&T California access lines in service and out-of-service incidents over the full 2010-19 period. Every AT\&T California wire center continued to experience further erosion in POTS demand, but the drop-off rate for individual wire centers was highly variable. The largest drop was 96.56% in the Paradise Main wire center, which had 12,039 lines in service as of January 2010 but only 414 by the end of 2019. As shown in Table 4A.1, the greatest demand drop-offs generally occurred in the largest wire centers.

Table 4A． 1

DROP－OFF IN POTS DEMAND AT WIRE CENTERS OF VARYING SIZES JANUARY 2010 －DECEMBER 2019

Wire Center Size	No．of Wire Centers	Total lines Jan 2010	Total lines Dec 2017	Total lines Dec 2019	\％change 2010－2019
Small（＜1000 lines）	90	43，326	19，710	16，396	－62．16\％
Medium（1000－3000）	109	202，041	70，494	54，785	－72．88\％
Large（＞3000－10000）	140	802，097	237，004	180，073	－77．55\％
Large Urban（10000－20000）	205	1，532，574	429，100	320，440	－79．09\％
Large Metro（＞20000）	168	5，445，451	1，488，863	1，107，849	－79．66\％
TOTAL	612	8，035，134	2，245，171	1，679，543	－79．10\％
NOTE．Size categorization per GO 133－C／D size ranges are based on POTS lines in service as of January 1， 2010.					

Figure 4A． 1 below compares the decrease in AT\＆T California＇s POTS lines in service with the fitted trend of total OOS incidents over the 2010－2019 period．As shown，the relative decreases have in aggregate been similar，although there has been a small increase in the relative incidence of OOS conditions．

The greatest demand drop－offs for legacy POTS services continues to be experienced in the largest wire centers．

From January 2010 through December 2019，total AT\＆T California POTS access lines in service experienced a 79.1% decrease，dropping from 8，035，134 in January 2010 to 1，679，543 in December 2019.

The continuing erosion in POTS demand occurred in every AT\＆T California wire center over the 2018－2019 Phase 2 study period．

Figure 4A.1. The decrease in the number of AT\&T California out-of-service Incidents has roughly corresponded with the drop-off in access lines in service over the 2010-2019 period.

Trouble Reports and POTS Lines in Service - a more granular perspective

Viewed at the individual wire center level, the ratio of out-of-service conditions to total POTS lines has varied both from month-to-month and as a long-term trend over time. Focusing specifically upon out-of-service conditions not cleared within 24 hours, some wire centers have experienced significant increases in the incidence of this condition, while others have seen improvements. The following tables summarize the most recent two years' (2018-19) experience with respect to four service quality metrics. Each table provides the 20 wire centers with the worst and the 10 wire centers with the best performance with respect to each of these four metrics. Table 4A. 2 presents the percentages of out-of-service conditions not cleared within 24 hours (expressed on a per 100 POTS lines per month basis). Table 4A. 3 provides the average out-of-service durations. Table 4A. 4 provides the percentages of out-of-service incidents cleared within 24 hours. Table 4A. 5 provides the number of days to clear 90% of out-of-service conditions. Finally, Table 4A. 6 provides these data elements for all AT\&T wire centers sorted alphabetically.

Table 4A. 2AT\&T CALIFORNIAOUT-OF-SERVICE OVER 24 HOURS' DURATION PER 100 POTS LINES IN SERVICE20 POOREST PERFORMING AND 10 BEST PERFORMING WIRE CENTERS$2018-2019$																		
Wire Center Name	Wire Center	CLLI	$\begin{aligned} & \text { Access } \\ & \text { Lines } \\ & \text { (avg for } \\ & \text { Qtr) } \end{aligned}$	OOS per 100 ALs per month	$\begin{gathered} \text { OOS }>24 \\ \text { per } 100 \\ \text { ALs per } \\ \text { month } \end{gathered}$	$\begin{aligned} & \text { Cleared } \\ & \text { win } 24 \\ & \text { hours } \\ & \text { (unadj) } \end{aligned}$		\# days to clear 90\% OOS (unadj)	\# days to clear 90\% OOS (adj)	Avg OOS Duratn (mins)	$\begin{gathered} \text { AVG } \\ \text { CPUC } \\ \text { oos } \\ \text { Duratn } \\ \text { (mins) } \end{gathered}$	oos	OOS >1 hour	OOS >24 Hours	OOS >1 week	CPUC OOS > 1 hour	CPUC OOS > 24 hours	$\begin{aligned} & \text { CPUC } \\ & \text { oos }>1 \\ & \text { Week } \end{aligned}$
20 POOREST PERFORMING WIRE CENTERS																		
FRENCH GULCH	530455	FRGLCA11	85	4.74	4.06	14.4\%	13.4\%	77.9	63.2	26999	25667	97	94	83	47	63	57	30
SHASTA LAKE	530503	SHLKCA01	342	5.53	3.74	32.4\%	41.5\%	11.0	6.8	6034	3590	454	444	307	90	207	128	31
SHOSHONE	760796	SHSHCA11	132	4.14	3.70	10.7\%	11.6\%	18.7	15.8	16171	15977	131	130	117	61	77	69	35
COULTERVILLE	209161	CTVLCA11	660	4.88	3.63	25.7\%	37.4\%	13.1	10.0	6862	4780	774	756	575	169	386	255	64
ALLEGHANEY	530425	ALGHCA11	48	4.34	3.56	18.0\%	18.4\%	7.3	9.1	5138	4952	50	47	41	9	29	26	4
BURRELL	559242	BURLCA11	89	4.73	3.51	25.7\%	26.2\%	5.2	4.7	3624	3141	101	100	75	7	75	56	4
OROVILLE EAST	530485	ORVLCA12	1526	4.61	3.47	24.7\%	32.4\%	7.4	5.8	5200	4179	1690	1653	1272	300	849	589	91
LATON	559186	LATNCA11	186	4.69	3.41	27.3\%	26.3\%	6.5	5.6	3601	3281	209	208	152	20	158	118	12
TERRA bella	559226	TRBLCA11	413	4.61	3.22	30.2\%	31.5\%	5.7	4.8	3930	3486	457	434	319	42	359	261	22
THREE RIVERS	559228	THRRCA11	595	4.80	3.13	34.7\%	38.7\%	4.5	4.3	3252	3397	685	665	447	30	251	164	13
BIG SUR	831101	BGSRCA11	392	3.74	3.11	16.8\%	17.7\%	5.8	4.2	4449	3511	352	343	293	36	248	211	19
BRIDGEVILLE	707281	BGVLCA11	173	4.37	2.94	32.6\%	42.4\%	4.6	3.3	3078	2722	181	178	122	10	66	38	1
WALKER BASIN	661401	WLBSCA11	457	3.85	2.94	23.7\%	28.7\%	5.4	4.8	3815	3059	422	410	322	31	217	164	7
BANGOR	530430	BNGRCA11	336	3.78	2.90	23.3\%	28.3\%	11.3	9.7	5919	5399	305	297	234	65	128	98	23
COTTONWOOD	530441	CTWDCA11	2148	4.17	2.90	30.4\%	32.1\%	10.8	9.2	6043	5037	2149	2091	1495	541	1350	948	276
ELK CREEK	530448	EKCKCA11	100	3.66	2.87	21.6\%	21.7\%	8.1	6.1	5305	4081	88	85	69	21	45	36	6
POTTER VALLEY	707316	PTVYCA11	532	3.68	2.87	22.1\%	24.8\%	13.3	11.0	7839	6198	470	461	366	148	356	275	88
TIPTON	559229	TPTNCA11	201	3.93	2.79	28.9\%	28.4\%	6.8	5.8	4380	3958	190	190	135	31	162	116	17
WOODLAKE	559239	WDLKCA11	543	4.10	2.75	33.1\%	35.5\%	5.1	4.2	3480	3055	535	524	358	37	392	261	15
NIAGARA	530490	PLVLCA12	2250	3.60	2.73	24.2\%	29.0\%	14.3	11.2	8389	6661	1942	1901	1472	656	1169	854	282
10 BEST PERFORMING WIRE CENTERS																		
FOLSOM NIMBUS	916453	FLSMCA12	1876	0.47	0.19	59.4\%	61.9\%	4.8	4.0	2560	2215	212	202	86	16	172	69	10
SPECTRUM-IRVINE	949810	IRVNCA12	1731	0.34	0.16	52.9\%	51.9\%	6.1	5.0	2867	2519	140	133	66	16	120	61	5
EDWARDS	661369	EDWRCA01	137	0.36	0.15	58.3\%	58.3\%	1.0	1.0	1037	1114	12	12	5	0	10	5	0
FOLSOM	415068	SNFCCA21	7728	0.35	0.15	57.5\%	60.9\%	4.5	3.6	2338	1917	657	595	279	34	473	207	17
BURBANK PALM AVE	818606	BRBNCA11	758	0.30	0.14	51.9\%	56.4\%	3.9	2.9	2102	1629	54	50	26	2	42	20	1
BISHOP RANCH	925082	BSRNCA70	1442	0.25	0.13	48.3\%	52.6\%	4.3	3.4	2165	1792	87	80	45	2	68	35	0
HACIENDA	925083	PLTNCA13	1625	0.31	0.12	61.2\%	62.0\%	3.4	2.5	1699	1484	121	114	47	1	102	41	1
BEALE CAPEHART-BEALE AFB	530431	BEALCA11	79	0.11	0.11	0.0\%	0.0\%	5.2	4.1	7471	5861	2	2	2	0	1	1	0
NORTH STAR	530516	TRUCCA12	606	0.14	0.09	35.0\%	41.0\%	10.0	6.9	5935	4122	20	19	13	5	12	8	2
LEMORE WYMAN	559189	LEMRCA12	90	0.19	0.05	75.0\%	100.0\%	1.0	0.1	817	177	4	2	1	0	1	0	0


	```Table 4A. 3 \\ AT\&T CALIFORNIA \\ AVERAGE OUT-OF-SERVICE DURATION \\ 20 POOREST PERFORMING AND 10 BEST PERFORMING WIRE CENTERS 2018-2019```																		
	Wire Center Name	$\begin{aligned} & \text { Wire } \\ & \text { Center } \end{aligned}$	CLLI	$\begin{aligned} & \text { Access } \\ & \text { Lines } \\ & \text { (avg for } \\ & \text { Qtr) } \end{aligned}$	OOS per 100 ALs per month	$\begin{aligned} & \text { oos }>24 \\ & \text { per } 100 \\ & \text { ALs per } \\ & \text { month } \end{aligned}$	$\begin{aligned} & \text { Cleared d } \\ & \text { win } 24 \\ & \text { hours } \\ & \text { (unad) } \end{aligned}$		$\begin{gathered} \text { \# days to } \\ \text { clear 90\% } \\ \text { oos } \\ \text { (unadj) } \end{gathered}$	$\begin{aligned} & \text { \#days to } \\ & \text { clear 90\% } \\ & \text { oos (adj) } \end{aligned}$	$\begin{gathered} \text { Avg oos } \\ \text { Duratn } \\ \text { (mins) } \end{gathered}$	$\begin{gathered} \text { AVg } \\ \text { CPUC } \\ \text { OOS } \\ \text { Duratn } \\ \text { (mins) } \end{gathered}$	$\begin{aligned} & \text { oos } \\ & \text { Total } \end{aligned}$	$\text { oos > } 1$	$\begin{gathered} \text { OOS }>24 \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { OOS }>1 \\ \text { week } \end{gathered}$	$\begin{gathered} \text { CPUC } \\ \text { OOS }>1 \\ \text { hour } \end{gathered}$	$\begin{gathered} \text { CPUC } \\ \text { OOS }>24 \\ \text { hours } \end{gathered}$	$\begin{gathered} \text { CPUC } \\ \text { OOS }>1 \\ \text { Week } \end{gathered}$
$\stackrel{\sim}{\sim}$	20 POOREST PERFORMING WIRE CENTERS																		
	FRENCH GULCH	530455	FRGLCA11	85	4.74	4.06	14.4\%	13.4\%	77.9	63.2	26999	25667	97	94	83	47	63	57	30
	FURNACE CREEK	760738	FRCKCA11	133	1.28	1.25	2.4\%	4.9\%	43.3	57.5	21026	21106	41	41	40	25	21	20	8
	AVALON	310603	AVLNCA11	1126	0.64	0.45	30.5\%	38.8\%	28.4	24.0	17249	11748	174	164	121	84	108	73	48
	SHOSHONE	760796	SHSHCA11	132	4.14	3.70	10.7\%	11.6\%	18.7	15.8	16171	15977	131	130	117	61	77	69	35
	bear valley	209155	BVLYCA11	445	1.51	1.23	18.6\%	22.7\%	34.8	8.8	14786	8598	161	152	131	57	88	74	22
	GEYSERVILLE	707294	GYVLCA11	297	2.20	1.60	27.4\%	31.5\%	15.9	12.5	12237	6772	157	150	114	53	118	87	37
	SONOMA	707323	SONMCA12	4019	1.29	0.72	44.5\%	54.3\%	32.8	5.6	12032	4613	1249	1199	693	254	750	372	68
	OJAI	805382	OJAICA11	1662	2.01	1.47	26.7\%	36.7\%	21.0	5.0	11969	4499	802	772	588	137	467	316	41
	ANNAPOLIS	707322	ANNPCA11	70	2.79	2.49	10.6\%	10.4\%	18.8	18.7	11056	9276	47	45	42	21	36	34	15
	MURPHYS	209203	MRPHCA11	846	2.74	2.02	26.3\%	34.6\%	16.4	9.4	10834	5453	556	539	410	181	288	199	61
	STONYFORD	530513	STFRCA11	136	2.30	1.97	14.7\%	18.7\%	13.0	10.2	10459	6464	75	73	64	34	46	39	16
	EL PORTAL	209241	YSMTCA12	302	2.17	1.86	14.0\%	15.8\%	14.3	10.9	9764	7836	157	156	135	80	112	95	47
	LOS ALAMOS	707319	SNRSCA11	2554	1.35	0.87	35.3\%	43.0\%	15.9	8.5	9754	4940	825	785	534	216	538	334	110
	OAKVIEW	805381	OKVWCA11	619	2.40	1.70	29.2\%	33.9\%	17.0	14.6	9619	8037	356	341	252	79	234	164	47
	kYburz	530465	KYBRCA11	61	2.26	1.92	15.2\%	18.2\%	10.7	8.0	8990	6732	33	33	28	16	18	14	5
	UPPER LAKE VALLEY RD	707329	UPLKCA11	401	3.11	2.01	35.5\%	42.6\%	18.6	9.7	8751	5235	299	287	193	97	177	110	36
	HOPLAND	707298	HPLDCA12	199	2.22	1.51	32.1\%	34.5\%	17.3	14.6	8691	7388	106	101	72	34	82	56	22
	BLUE LAKE	707278	BLLKCA11	236	2.80	2.33	17.0\%	14.5\%	8.8	17.9	8663	10706	159	159	132	20	83	71	10
	MONTE RIO	707309	MNRICA11	515	2.51	1.85	26.5\%	35.1\%	12.5	11.2	8492	6184	310	301	228	124	177	120	49
	VENTURA/FIR	805400	VNTRCA02	2398	0.96	0.59	38.0\%	47.3\%	19.3	4.8	8466	4000	550	513	341	86	372	216	24
	10 BEST PERFORMING WIRE CENTERS																		
$m m$	PEDLEY	951765	PDLYCA11	2502	1.19	0.46	61.3\%	66.3\%	3.2	2.6	1861	1629	713	688	276	27	499	175	11
	MOJAVE	661376	mojvca01	590	1.83	0.85	53.3\%	56.8\%	3.0	2.3	1845	1582	259	247	121		188	86	
O	MENDOTA	559195	MNDTCA11	445	1.24	0.46	62.9\%	65.5\%	3.5	2.7	1831	1468	132	128	49	3	115	41	2
I口	BENICIA	707277	BNCICA11	1978	1.01	0.34		69.6\%	3.0	2.4	1828	1567	481	457	160	8	402	130	4
	HUNTINGTON PARK	323617	HNPKCAO1	6843	1.43	0.56	61.1\%	67.1\%	3.0	2.2	1822	1407	2345	2174	913	52	1774	635	21
$\bigcirc$	LOS ANGELES MADISON/MO	213624	LSANCA02	8070	0.67	0.24	63.6\%	67.8\%	3.3	2.7	1788	1410	1302	1186	474	46	1013	364	24
00	AROMAS	831144	ARMSCA11	447	1.74	0.75	56.7\%	64.3\%	3.0	2.5	1711	1472	187	180	81	0	138	51	0
	HACIENDA	925083	PLTNCA13	1625	0.31	0.12	61.2\%	62.0\%	3.4	2.5	1699	1484	121	114	47		102	41	1
	EDWARDS	661369	EDWRCA01	137	0.36	0.15	58.3\%	58.3\%	1.0	1.0	1037	1114	12	12	5	0	10	${ }^{5}$	0
$\bigcirc$	LEMORE WYMAN	559189	LEMRCA12	90	0.19	0.05	75.0\%	100.0\%	1.0	0.1	817	177	4		1	0	,	0	0
๑0																			
$\prec 0$																			
- ${ }^{-1}$																			
マZ																			
$\bigcirc \square$																			


Table 4A. 4   AT\&T CALIFORNIA   PERCENT OUT-OF-SERVICE CLEARED WITHIN 24 HOURS 20 POOREST PERFORMING AND 10 BEST PERFORMING WIRE CENTERS 2018-2019																		
Wire Center Name	$\begin{aligned} & \text { Wire } \\ & \text { Center } \end{aligned}$	CLLI	$\begin{gathered} \text { Access } \\ \text { Lines } \\ (\text { avg for } \\ \text { Otr) } \end{gathered}$	OOS per 100 ALs per month	OOS>24 per 100 ALs per month	$\begin{aligned} & \text { Cleared } \\ & \text { w/in } 24 \\ & \text { hours } \\ & \text { (unadj) } \end{aligned}$		$\begin{gathered} \text { \# days to } \\ \text { clear } 90 \% \\ \text { oos } \\ \text { (unadj) } \end{gathered}$	\# days to clear $90 \%$ OOS (adj)	Avg OOS Duratn (mins)	AVG CPUC OOS   Duratn   (mins	$\begin{aligned} & \text { oos } \\ & \text { Total } \end{aligned}$	$\text { oos }>1$ hour	$\begin{gathered} \text { OOS }>24 \\ \text { Hours } \end{gathered}$	$\begin{gathered} \text { oos > }>1 \\ \text { weekk } \end{gathered}$	CPUC OOS > 1 hour	$\begin{gathered} \text { CPUC } \\ \text { Oos }>24 \\ \text { hours } \end{gathered}$	$\begin{gathered} \text { CPUC } \\ \text { OOS }>1 \\ \text { Week } \end{gathered}$
20 POOREST PERFORMING WIRE CENTERS																		
beale capehart-beale afb	530431	bealca11	79	0.11	0.11	0.0\%	0.0\%	5.2	4.1	7471	5861	2	2	2	0	1	1	0
MOUNTAIN PASS	760753	MTPSCA11	20	1.71	1.71	0.0\%	0.0\%	7.2	6.2	7123	6953	8	8	8	4		4	
WEOTT	707333	WEOTCA11	59	0.84	0.84	0.0\%	0.0\%	6.7	5.2	4612	3948	12	12	12	2	8	8	0
FURNACE CREEK	760738	FRCKCA11	133	1.28	1.25	2.4\%	4.9\%	43.3	57.5	21026	21106	41	41	40	25	21	20	8
BAKER	760705	BAKRCA11	120	2.08	1.98	5.0\%	2.4\%	7.1	6.9	7325	7112	60	59	57	13	38	38	5
ANNAPOLIS	707322	ANNPCA11	70	2.79	2.49	10.6\%	10.4\%	18.8	18.7	11056	9276	47	45	42	21	36	34	15
SHOSHONE	760796	SHSHCA11	132	4.14	3.70	10.7\%	11.6\%	18.7	15.8	16171	15977	131	130	117	61	77	69	35
GAZELLE	530456	GzLLCA11	44	1.60	1.41	11.8\%	23.5\%	4.8	4.1	4693	3865	17	17	15	1	8	7	0
yosemite main	209240	YSMTCA11	529	0.98	0.85	12.9\%	14.5\%	11.1	9.4	7411	6297	124	121	108	42	107	94	28
EL PORTAL	209241	YSMTCA12	302	2.17	1.86	14.0\%	15.8\%	14.3	10.9	9764	7836	157	156	135	80	112	95	47
WAWONA	209238	WANACA11	268	1.20	1.03	14.3\%	15.8\%	9.7	8.2	8295	7078	77	77	66	26	55	47	14
FRENCH GULCH	530455	FRGLCA11	85	4.74	4.06	14.4\%	13.4\%	77.9	63.2	26999	25667	97	94	83	47	63	57	30
STONYFORD	530513	STFRCA11	136	2.30	1.97	14.7\%	18.7\%	13.0	10.2	10459	6464	75	73	64	34	46	39	16
KYBURZ	530465	KYBRCA11	61	2.26	1.92	15.2\%	18.2\%	10.7	8.0	8990	6732	33	33	28	16	18	14	5
BIG SUR	831101	BGSRCA11	392	3.74	3.11	16.8\%	17.7\%	5.8	4.2	4449	3511	352	343	293	36	248	211	19
POINT ARENA	707315	PNARCA11	600	1.98	1.65	16.8\%	22.0\%	12.4	10.7	7611	6158	285	282	237	84	208	166	44
BLUE LAKE	707278	BLLKCA11	236	2.80	2.33	17.0\%	14.5\%	8.8	17.9	8663	10706	159	159	132	20	83	71	10
SPRINGVILLE	559219	SPVLCA11	750	2.85	2.36	17.2\%	20.4\%	10.2	7.7	6456	5021	513	508	425	123	363	293	58
SEQUOIA PARK ASH MTN	559152	ASmTCA11	85	2.79	2.30	17.5\%	16.2\%	4.8	6.0	5577	6864	57	57	47	4	26	22	2
ALLEGHANEY	530425	ALGHCA11	48	4.34	3.56	18.0\%	18.4\%	7.3	9.1	5138	4952	50	47	41	9	29	26	4
10 BEST PERFORMING WIRE CENTERS																		
FREMONT ADAMS	510015	FRMTCA12	6954	1.01	0.38	62.2\%	68.3\%	2.9	2.0	2367	1751	1683	1611	636	54	1359	460	30
COLMA	650010	COLACA01	5946	1.00	0.37	62.7\%	68.3\%	2.9	2.1	1989	1590	1423	1317	531	43	849	300	19
VALLEJO	707331	VLLJCA01	6232	1.29	0.48	62.7\%	66.7\%	2.9	2.4	2205	1900	1935	1833	721	53	1598	572	31
MENDOTA	559195	MNDTCA11	445	1.24	0.46	62.9\%	65.5\%	3.5	2.7	1831	1468	132	128	49	3	115	41	2
LOS ANGELES MADISON/MO	213624	LSANCA02	8070	0.67	0.24	63.6\%	67.8\%	3.3	2.7	1788	1410	1302	1186	474	46	1013	364	24
CAMPTONVILLE	530436	CMPVCA11	220	6.07	2.18	64.1\%	68.3\%	3.8	2.7	2227	1610	320	307	115	18	178	63	7
SAN JOSE CHYNOWETH AV	408131	SNJSCA13	7641	1.71	0.61	64.4\%	70.3\%	3.1	2.3	2007	1617	3130	3012	1114	109	2406	752	57
benicia	707277	BNCICA11	1978	1.01	0.34	66.7\%	69.6\%	3.0	2.4	1828	1567	481	457	160	8	402	130	4
BORREGO SPRINGS	760707	BRSPCA11	703	4.48	1.38	69.2\%	64.4\%	4.0	3.7	2147	2777	756	717	233	33	257	93	16
LEMORE WYMAN	559189	LEMRCA12	90	0.19	0.05	75.0\%	100.0\%	1.0	0.1	817	177	4	2	1	0	1	0	0



	                  8             퍽   耳              


®      4   0   4   4	     드…                        品            ד్రు心 じ         末  




$\stackrel{\square}{\square}$	         응 옾          \＆             $\stackrel{\text { \＃}}{\text { \＃}}$         す。            象家  



¢	   $\qquad$   む    헌                    


$\stackrel{\square}{1}$	0 $\hat{C}_{0}^{-}$ 0 0 0 0   U侯   U      - تَ





M	$\begin{aligned} & 0{ }^{-}{ }^{\circ} \\ & \hat{0} \hat{0}_{0}^{\circ}{ }_{0}^{0} \end{aligned}$       ㄷ．．    வ   耳్＂                 



## AT\&T Service Quality Performance

In our Phase 1 Report, we described a series of detailed analyses of AT\&T service quality and performance in resolving out-of-service conditions both statewide and, more importantly, on a wire center-by-wire center basis. Each of these analyses are updated here to include results for 2018 and 2019.

## "Adjusted" vs. "actual" results

As we explained in our Phase 1 Report, GO 133-C/D does not hold ILECs responsible for the entire outage duration if a Sunday or federal holiday intervenes. Outage durations are thus adjusted for GO 133-C/D compliance purposes by subtracting Sunday or federal holiday hours that fall within an outage situation. Certain additional situations have also been treated as "excluded" even though, from the customer's perspective, the service is not functioning. ${ }^{10}$ As we explained in our Phase 1 Report, ETI does not believe that it is appropriate to entirely exclude all instances where, upon encountering an out-of-service condition, the customer has requested an appointment date/time at the customer's convenience because the requirement to accommodate the customer's personal needs in order to effect a restoration of service is a direct result of the service outage itself. Instead, the delay in the ultimate restoration of service attributable to the additional time needed to satisfy the customer's request for an appointment should be adjusted out of the total out-of-service duration. ETI was advised that such an adjustment is already reflected in the "CPUC Duration" calculation provided on the individual Trouble Report data records. Figures 4A. 4 through 4A. 12 provide the OOS data on both an actual and an adjusted basis.

## Focus upon 2018-2019 results

Inclusion of the additional 2018-2019 trouble tickets has enabled us to develop service quality trends over a 10 -year period (2010-2019) whereas the Phase 1 study was limited to only 8 years of data. However, we also wanted to examine each of the two datasets separately in order to evaluate whether conditions in these last two years had improved or deteriorated relative to the Phase 1 study period. Each of the service quality charts presented in this chapter provides three separate trend lines - the full 10-year trend (the solid red line); the 8 -year Phase 1 trend (the dashed green line, which is approximately the same as the 8 -year trend line presented in our

[^2]Phase 1 Report ${ }^{11}$ ); and the 2-year Phase 2 trend line for 2018-2019 (the dashed purple line). This format provides a convenient visual comparison of the Phase 1 and Phase 2 results for each of the individual service quality metrics we examined.

Each of these three trend lines was calculated using a separate regression analysis, each confined to its respective period (i.e., 2010-2019, 2010-2017, and 2018-2019. In order to compare the results for 2018-2019 with the Phase 1 trends, the 2018-2019 analysis used the fourth quarter of 2017 as a starting point. Since these trends were each subject to separate calculations, their respective starting and ending points are discontiguous. For this reason, the focus should be mainly upon the percentage change - up or down - over each of the periods studied, rather than upon the absolute starting and ending values.

## Out-of-service conditions overall

There has been a slight upward trend over the 10-year study period in the number of out-ofservice trouble reports per 100 access lines, as shown on Figure 4A.2. The rate of increase, as shown on the 2018-2019 trend line, has accelerated slightly relative to where it had been for the 2010-2017 Phase 1 study period. Updated Figure 4A. 2 eliminates all trouble tickets that did not involve an out-of-service condition. Updated Figure 4A. 3 eliminates trouble reports that could be quickly resolved - for example, by advising the customer to make sure that the handset is plugged in or that the battery in a cordless phone has not run down. By excluding those OOS complaints that can typically be cleared up quickly, we refine our focus to conditions that will require more complex remedial measures. As shown on Figure 4A.3, while there had been a generally upward trend in the average duration of all OOS conditions over one (1) hour in duration over the Phase 1 study period, 2018-2019 saw a sharp increase for that metric. It took AT\&T some $29 \%$ longer on average to restore a service outage at the end of the 8 -year study period than at its outset. However, for 2018-2019, that trend increased even further, rising $26.3 \%$ in just two years. The long-term trend, calculated over the full 10-year (2010-2019) period, was $67.3 \%$ higher at the end of the period than at its outset.

The trend in average duration of all out-of-service conditions over one hour had been steadily increasing over the Phase 1 study period, and spiked further in 2018-2019. By the end of 2019, it took AT\&T 67\% longer to restore service than it took in 2010.

[^3]

Figure 4A.2. Over the 2010-2017 period, the trend of AT\&T California out-of-service incidents per 100 access lines (actual) had been increasing; for 2018-2019, that trend experienced a further increase.


Figure 4A.3. The rate of increase in the average duration of AT\&T California out-of-service incidents lasting more than one hour (actual) grew even larger in the 2018-2019 period.

## Duration of out-of-service conditions

A principal focus of the Commission's concerns regarding ILEC service quality is with respect to both the frequency and the duration of out-of-service conditions. GO 133-C/D has placed particular emphasis upon protracted out-of-service situations, focusing specifically upon POTS lines that are not restored within the first 24 hours.

Updated Figures 4A. 4 and 4A. 5 track the average duration of all OOS conditions and the average duration of OOS conditions greater than 24 hours, respectively, together with their longterm trend lines, on an actual basis. Updated Figures 4A. 6 and 4A. 7 present these same metrics on an adjusted bases (i.e., excluding Sunday/holiday hours and OOS conditions deemed beyond the carrier's control). As the results show, for AT\&T California overall, the actual durations of all reported service outages (Figure 4A.4), as reflected in the trend line, have steadily increased by $77.6 \%$ over the full 10 -year study period. Looking at the Phase 1 and Phase 2 study periods separately, we observe a particularly sharp increase in 2018-2019. The 2010-2017 trend in average OOS duration increased by $31.0 \%$ from 2010 through 2017. However, in just the last two years, that metric jumped by another $28.4 \%$. For outages that remained uncleared after 24 hours (Figure 4A.5), their trend line average durations was lengthened by $47 \%$ over the 20102017 period. For 2018 and 2019, average duration rose further, although the trend held steady over those last two years. The results were somewhat better for all OOS when Sunday/holiday hours and "excluded" situations were eliminated, but the trend was still in the upward direction, and increased for 2018-2019.

Finally, the incidence of OOS conditions lasting more than 24 hours (updated Figure 4A. 8 OOS $>24$ Hours per 100 Access Lines), which had held steady over the 2010-2017 study period, experienced an increase over the 2018-2019 period.


Figure 4A.4. The average duration of all AT\&T California out-of-service incidents (actual) saw a significant jump during the 2018-2019 Phase 2 study period.


Figure 4A.5. The average duration of all AT\&T California out-of-service incidents over 24 hours (actual) increased further over the 2018-2019 Phase 2 study period.


Figure 4A.6. The average duration of all AT\&T California out-of-service incidents (adjusted) saw a significant jump during the 2018-2019 Phase 2 study period.


Figure 4A.7. The average duration of all AT\&T California out-of-service incidents over 24 hours (adjusted) increased further over the 2018-2019 Phase 2 study period.


Figure 4A.8. 2018-2019 saw a $39 \%$ increase in the rate of AT\&T California out-of-service conditions over 24 hours (actual), as compared with about $12 \%$ over the 2010-2017 Phase 1 study period.

## Out-of-service conditions cleared within 24 hours

The average duration of AT\&T California out-of-service conditions has been increasing over the study period, as plotted on Figure 4A. 3 above. Taken over the 8 -year (2010-2017) Phase 1 period, AT\&T data identify a total of $5,000,823$ trouble reports that involved an out of service condition of varying durations. 2,480,362 of these - nearly half - remained uncleared after 24 hours. Even on an adjusted basis, there were still $1,837,177$ outages - some $44.05 \%$ - that remained uncleared after 24 hours. For the Phase $22018-2019$ period, there were 573,581 trouble reports that involved an out of service condition of varying durations; 320,567 of these $55.9 \%$ - remained uncleared after 24 hours. The various clearance rates are summarized in Table 4A. 7 below:

Table 4A. 7								
AT\&T CALIFORNIA								
QUANTITIES OF ACTUAL AND ADJUSTED ("CPUC") OUT-OF-SERVICE CONDITIONS								
2010-2017					2018-2019			
Condition	Actual		Adjusted		Actual		Adjusted	
	Quantity	Pct	Quantity	Pct	Quantity	Pct	Quantity	Pct
Out-of-Service - all types	5,001,270	100.00\%	4,170,490	100.00\%	573,581	100.00\%	434,737	100.00\%
Out-of-Service - less than one (1) hour	329,043	6.58\%	339,906	8.15\%	25,858	4.51\%	26,336	6.06\%
Out-of-Service - 1 to 6 hours	857,648	17.15\%	744,189	17.84\%	109,786	19.14\%	88,625	20.39\%
Out-of-Service - 6 to 12 hours	272,620	5.45\%	295,679	7.09\%	27,384	4.77\%	26,195	6.03\%
Out-of-Service - 12 to 24 hours	1,061,366	21.22\%	953,539	22.86\%	89,986	15.69\%	74,339	17.10\%
Out-of-Service - more than 24 hours	2,480,593	49.60\%	1,837,177	44.05\%	320,567	55.89\%	219,242	50.43\%
Out-of-Service - more than 1 week	272,465	5.45\%	140,948	3.38\%	62,412	10.88\%	29,627	6.81\%
NOTE: Out-of-service more than 1 week is included in Out-of-service more than 24 hours..								

Over the 8-year (2010-2017) Phase 1 period, $49.6 \%$ of AT\&T out of service conditions remained uncleared after 24 hours. For the Phase 2 2018-2019 period, $55.9 \%$ of all reported service outages remained uncleared after 24 hours.

GO 133-C/D §3.4(c) establishes a "Minimum Standard Reporting Level" requiring that " $90 \%$ of all out of service trouble reports [be cleared] within 24 hours [as] the set minimum standard." As updated Table 4A. 7 demonstrates, over the 2010-2017 period whose reporting was ordered by the adoption of GO 133-C, AT\&T had not come even remotely close to meeting this
requirement: Only $50.4 \%$ of the roughly 5 -million out-of-service conditions had been cleared within 24 hours; even on an adjusted basis, where Sunday and federal holiday hours were subtracted out of the outage duration, only $63.3 \%$ of out-of-service conditions had been restored within 24 hours. The shortfall relative to the GO 133-D 90\% standard increased further in 20182019 , where service had been restored to only $44.1 \%$ of the 573,581 out-of-service conditions ( $61.8 \%$ for "adjusted") within 24 hours.

> During 2018-2019, 55.9\% of the 573,581 out-of-service conditions ( $38.2 \%$ on an "adjusted" basis) remained uncleared after 24 hours, up from the corresponding 49.6\% / 36.7\% levels during the 2010-2017 period. To satisfy the GO 133-C §3.4(c) requirement, these percentages would need to drop to less than $10 \%$.

There was considerable variation across all of AT\&T's $612^{12}$ California wire centers both in terms of percent of out-of-service trouble tickets cleared within 24 hours and the number of days required to clear $90 \%$ of all out-of-service conditions. Updated Table 4A. 8 below provides the results of linear regression trend line calculations for the GO 133-C/D §3.4(c) "set minimum standard" of " $90 \%$ of all out of service trouble reports within 24 hours" for each of the 612 AT\&T California wire centers over the full 2010-2019 period (Table 4A.8(a)) and for 2018-2019 only (Table 4A-8(b)). These tables also provide similar trend line calculations for the number of days required to clear $90 \%$ of all out-of-service conditions, and for each on both an actual and adjusted basis.

The values shown for the trend lines are the coefficients of the independent variable in each case - i.e., the quarterly time period - which when applied to the time variable produced the predicted value for the percent cleared within 24 hours, or the number of days required to clear $90 \%$. The coefficient would appear graphically as the slope of a plotted trend line. For the "percentage cleared within 24 hours" metrics, a positive value of the coefficient indicates improvement over time (i.e., an upward sloping trend line); a negative value indicates that over time the ILEC's record of meeting this standard has been deteriorating. For "days required to clear $90 \%$," a negative value of the slope of the trend line indicates that, over time, it is taking less time for the ILEC to meet the $90 \%$ completion objective - thus, an improvement in

[^4]performance. Positive values for the coefficient of "days required to clear $90 \%$ " indicates that it is taking longer for the Company to reach the target $90 \%$ cleared threshold.

We have sorted this table by the coefficient of Percent Cleared within 24 Hours, from lowest (i.e., most negative, or worst result) to highest (most positive, or best result). The "Coefficient" shown for each of the four metrics on this table represents the slope of the estimated trend line based upon the actual out-of-service incidents experienced in the wire center over the full 10-year period (Table 4A-8(a)) and for the 2-year 2018-2019 period (Table 4A-8(b)). A positive value for the coefficient indicates an upward trend - i.e., that if plotted on a graph the trend line would go from the lower left to the upper right of the chart. The higher the positive value of a coefficient, the greater the rate of increase over time.

The regression calculations were prepared using quarterly time-series data. The tables provide the starting and ending predicted values for the variable being examined (e.g., the starting and ending predicted values for the percentage of out-of-service tickets cleared within 24 hours) and the mean value over the full 10-year period or the 2 -year Phase 2 period. The regression coefficient represents the change, up or down, in the trend on a per-quarter basis. For example, the following values are shown for AT\&T's Acton wire center (ACTNCA12) over the 2010-2019 period with respect to the Percent Cleared within 24 Hours.

Acton - Percent out-of-service cleared within 24 hours - 2010-2019					
Mean Value					
(Mean Val)	Regression   Coefficient   (Coef)	$t$-statistic   $(t$-stat)	Confidence   Interval   (Conf.)	Starting value -   1st Quarter 2010   (1Q10 Val)	Ending value -   4th Quarter 2019   (4Q19 Val)
$56.63 \%$	-0.0970	-0.4036	$31.1 \%$	$58.52 \%$	$54.74 \%$

From this, we learn that the mean (average) percentage of out-of-service conditions cleared by AT\&T within 24 hours in the Acton wire center was $56.63 \%$ over the full 10 -year period. At the beginning of the period (first quarter 2010), the predicted regression trend line indicated that AT\&T was clearing $58.52 \%$ within 24 hours; by the end of the period (fourth quarter of 2019), it was only slightly lower, at $54.74 \%$. These are not the actual clearance percentages for either of the two quarters; they are the projected rate of OOS clearances based upon the linear regression calculation. The "regression coefficient" of -0.0970 is interpreted as the change in the predicted trend per quarter - i.e., as each quarter went by, the percent cleared within 24 hours was decreasing by approximately $0.097 \%$. The $t$-statistic is a measure of the statistical significance of the estimated coefficient, specifically, the confidence that the regression coefficient is significantly different from zero. In general, a $t$-value with an absolute value in excess of roughly 2.0 denotes statistical significance at the $95 \%$ confidence level. Here, a $t$-value of -0.4036
corresponds to a confidence level of $31.1 \%$. The confidence level corresponding with the $t$ values are also provided on the tables. In this instance, the performance of the Acton wire center with respect to the "percent cleared within 24 hours" metric was virtually unchanged over the full 20 -year time frame - i.e., the slope of the trend line was close to zero, as confirmed by the low value of the $t$-statistic.

If we then compare the results for the Acton wire center over the full 2010-2019 period with the corresponding results for the 2018-2019 Phase 2 study period from Table 4A.8(b), we observe a dramatic shift in performance:

Acton - Percent out-of-service cleared within 24 hours						
	Mean   Value   (Mean   Val)	Regression   Coefficient   (Coef)	$t$-statistic   $(t$-stat)	Confidence   Interval   (Conf.)	Starting value -   (1Q10 or 4Q2017   Value)	Ending value - 4th   Quarter 2019   (4Q19 Val)
Period	$56.63 \%$	-0.0970	-0.4036	$31.1 \%$	$58.52 \%$	$54.74 \%$
$2010-19$	$5018-19$	$45.87 \%$	-9.0096	-4.2320	$99.5 \%$	$77.40 \%$

The regression coefficient for the 2018-2019 period has become highly negative, indicating a highly pronounced downward trend. The high value for the $t$-statistic, reflecting a confidence level of $99.5 \%$, further confirms the statistical significance of this drop-off in performance.

Updated Table 4A. 9 summarizes the percentages of out-of-service incidents that are cleared within 24 hours and the number of days required to clear $90 \%$ of all reported out-of-service conditions, on both an actual and an adjusted (for weekends and holidays) basis, across all of AT\&T's wire centers over the 2010-2019 period. GO 133-C/D §3.4(c) requires that $90 \%$ of all out of service trouble reports are expected to be cleared within 24 hours. As the results indicate, on a companywide basis, AT\&T California has not come even close to meeting the $90 \%$ cleared within 24 hours standard.


ECONOMICS AND






 -



ํํำ













## 












## す。         <br>   <br>        <br>       <br>  <br>  <br>   N   



ECDNDMICS AND
116
TECHNDLDGY, INC.

##  <br>  <br> だำ                       <br>       





































```
Z.
```



```
*)
*)
```























```
*)
```








CONFIDENTIAL AND PROPRIETARY PER P.U. CODE § 583, GENERAL ORDER 66-D, \& D.16-08-024
 ®．


 す。











Tif


















ECONOMICS AND
122
TECHNDLDGY, INC.

##          <br>                <br>       

##  <br>         <br>                 <br>       



ECDNDMICS AND
124
TECHNDLDGY, INC.









風高


















 N以




##        <br>   <br>   <br>   <br>                  



ECDNDMICS AND
126
TECHNDLDGY, INC.








```
*)
*)
```





```
M,
```












```
O.
```










宸 㟶

ECONOMICS AND
128


## Table 4A. 9

## AT\&T CALIFORNIA

## PERCENTAGES OF ACTUAL AND ADJUSTED ("CPUC") OUT-OF-SERVICE CONDITIONS CLEARED WITHIN 24 HOURS AND DAYS REQUIRED TO CLEAR 90\%

	Actual		Adjusted	
Quarter	Pct. Cleared within 24 hours	Days Required to Clear 90\%	Pct. Cleared within 24 hours	Days Required to Clear 90\%
2010q1	33.5\%	4.86	36.5\%	4.10
2010q2	28.7\%	5.04	30.1\%	4.14
2010q3	44.6\%	4.92	46.8\%	4.08
2010q4	41.0\%	5.15	43.8\%	4.48
2011q1	39.1\%	11.52	57.3\%	11.15
2011q2	55.3\%	2.97	71.9\%	2.03
2011q3	62.6\%	2.29	77.9\%	1.77
2011q4	61.8\%	2.64	77.8\%	1.86
2012q1	66.7\%	2.07	78.4\%	1.67
2012q2	65.5\%	2.17	76.8\%	1.81
2012q3	64.3\%	2.44	75.1\%	1.89
2012q4	49.7\%	4.22	71.3\%	3.05
2013q1	58.9\%	3.13	75.1\%	2.20
2013q2	64.4\%	2.67	75.6\%	1.95
2013q3	54.0\%	3.24	65.6\%	2.72
2013q4	59.2\%	3.00	71.5\%	2.11
2014q1	42.1\%	4.86	58.0\%	3.84
2014q2	53.9\%	4.10	64.3\%	3.25
2014q3	61.0\%	3.23	70.2\%	2.74
2014q4	43.8\%	6.15	61.0\%	4.92
2015q1	47.1\%	5.64	59.7\%	4.23
2015q2	63.7\%	2.91	73.1\%	2.09
2015q3	64.5\%	2.81	73.7\%	2.04
2015q4	53.5\%	3.93	67.0\%	2.93
2016q1	45.2\%	4.94	61.5\%	3.92
2016q2	66.6\%	2.70	77.6\%	1.91
2016q3	65.9\%	2.50	76.8\%	1.90
2016q4	46.0\%	5.26	61.0\%	4.20
2017q1	36.7\%	8.08	78.4\%	5.49
2017q2	42.9\%	6.93	59.4\%	5.57
2017q3	45.0\%	6.95	58.4\%	5.82
2017q4	48.3\%	7.02	63.2\%	5.30
2018q1	48.5\%	6.33	65.9\%	4.98
2018q2	59.3\%	3.31	71.5\%	2.77
2018q3	51.5\%	4.08	65.4\%	3.05
2018q4	41.0\%	6.15	59.2\%	4.99
2019q1	36.3\%	7.90	60.3\%	6.01
2019q2	47.3\%	4.82	62.4\%	3.59
2019q3	37.9\%	6.13	52.7\%	5.00
2019q4	36.1\%	8.13	55.5\%	6.86

Updated Figures 4A. 9 and 4A. 10 plot these data and trends graphically. The AT\&T California companywide percentages of outages cleared within 24 hours - actual and adjusted are plotted, along with associated trend lines. While there is considerable year-to-year variation in the completion percentages, the long term trend shows some, albeit modest, improvement i.e., over the Phase 1 2010-2017 period, a successively larger percentage of outages are being cleared within 24 hours. Mathematically, the trend lines for both actual and adjusted metrics have positive slopes, reflecting the increasing percentages of OOS completions within 24 hours over the 2010-2017 period. However, this is decidedly not the case for the 2018-2019 Phase 2 period, where the slopes of both the actual and adjusted metrics turn sharply negative.

Another approach to examining this " $90 \%$ cleared within 24 hours" requirement is to look at the length of time it takes AT\&T to reach the $90 \%$ cleared threshold. These results are also plotted, for AT\&T statewide, on updated Figures 4A. 11 (actual) and 4A. 12 (adjusted). On an adjusted basis, the number of days required for $90 \%$ OOS cleared ranges from a low of 1.67 days in the first quarter of 2012 to a high of 11.15 days in the first quarter of 2011. For the most recent year (2019), the adjusted number of days to achieve $90 \%$ OOS cleared falls in the 3.8 to 5.2 range. The plotted trend lines for both the actual and adjusted days to achieve $90 \%$ OOS cleared shows a lengthening of this duration over time. Here, the slope of the trend lines are positive, reflecting the successively larger number of days required to achieve $90 \%$ OOS cleared over the 2010-17 period, becoming even more positive over the 2018-2019 time frame.

On an adjusted basis, the number of days required for AT\&T to clear $90 \%$ of all out-of-service conditions was increasing at a faster rate over the 2018-2019 period than over the longer Phase 1 period. Over the eight years from 2010Q1 through 2017Q4, the number of days required for AT\&T to clear $90 \%$ of service outages increased at an annual rate of $3.37 \%$, from 4.10 days to 5.30 days. Over the next 24 months, from 2017Q4 to 2019Q4, the days to clear 90\% jumped at an annual rate of $13.77 \%$, from 5.30 to 6.86 .

There is considerable variation across all of AT\&T's 612 California wire centers both in terms of percent OOS cleared within 24 hours and days required to achieve $90 \%$ OOS cleared. Trend lines for these four metrics - actual and adjusted percentages of OOS cleared within 24 hours, and actual and adjusted days required to achieve $90 \%$ OOS cleared - have been calculated for each wire center. The values shown for the trend lines are the coefficient of the independent variable, time in this case, and would appear graphically as the slope of a plotted trend line.


Figure 4A.9. AT\&T California had not come even close to achieving the GO 133-CD §3.4(c) goal of $90 \%$ of all OOS cleared within 24 hours (actual) during the Phase 1 study period, and that metric saw a significant degradation in 2018-2019.


Figure 4A.10. The percentage of all AT\&T California OOS cleared within 24 hours (adjusted) has consistently fallen far short of meeting the GO 133-C/D §3.4(c) 90\% cleared within 24 hours standard, and got a lot lower in 2018-2019.


Figure 4A.11. The number of days required to clear $90 \%$ of AT\&T California out-of-service incidents (actual) increased considerably in 2018-2019.


Figure 4A.12. The number of days required to clear $90 \%$ of AT\&T California out-of-service incidents (adjusted) also increased in 2018-2019.

For the "percentages of OOS cleared within 24 hours" metric, a positive value of the slope of the trend line indicates that, over time, the durations of service outages are getting shorter and it is taking less time, on average, for AT\&T to restore service; a negative value indicates just the opposite. For the "days required to achieve $90 \%$ OOS cleared" metric, a positive value of the slope of the trend line indicates that, over time, it is taking longer to meet the $90 \%$ completion objective; a negative value indicates an improvement in performance in that it is taking less time to meet the $90 \%$ completion objective. Positive values for the "percentages of OOS cleared within 24 hours" metrics indicate an improving trend over time; negative values indicate that the completion percentage is decreasing over time.

Updated Appendix 4A-1 provides a compilation of individual wire center statistics and includes, for each AT\&T California wire center, data and trend line calculations for several performance metrics relating to OOS conditions cleared within varying lengths of time.

## AT\&T has continued to increase rates for its legacy services while service quality continues to be degraded

As we discussed in our Phase 1 Report, AT\&T California appears to have implemented a "harvesting strategy" similar to one that its parent company had pursued in the period immediately following its July 2005 announcement of its intention to merge with SBC Communications, which was accompanied by the withdrawal of AT\&T Corp. from CLEC operations. AT\&T had described this "harvesting" tactic in testimony submitted in the CPUC's AT\&T/SBC merger proceeding. ${ }^{13}$ Consistent with this approach and as shown in updated Table 4A. 10 below, AT\&T California had been steadily raising prices for its legacy POTS services since such actions became possible following the CPUC's adoption of the Uniform Regulatory Framework in 2006, although no further increases were put into effect after 2018. ${ }^{14}$ "Harvesting" both explains and

[^5]14. Uniform Regulatory Framework, D.06-08-030.
relies upon the seemingly inverse relationship between the impact of competition (as reflected in POTS line losses) and AT\&T's service quality record. If the market were so competitive that customers confronted actual alternatives to traditional POTS services, one would expect to see the greatest loss of demand in wire centers exhibiting the poorest service quality, with only minimal losses where service quality is being maintained or improved. Yet the actual result appears to be just the opposite - line losses are greatest in those wire centers exhibiting the best performance with respect to addressing and responding to service outages.

			Table	4A. 10			
		C RESIDE RATE	AT\&T CAL NTIAL (PO NCREASE	IFORNIA   S) ACCES   ISTORY 2		VICE	
		Flat-r	e Residen	(1FR)	Measur	Rate Resi	ce (1MR)
Year	Effective date	Monthly Rate	\% incr since onset of URF	\% incr relative to 1/1/10	Monthly Rate	\% incr since onset of URF	\% incr relative to 1/1/10
2006	9/1/2006	\$10.69	-		\$5.70	-	
2008	1/1/2008	\$10.94	2.34\%		\$5.83	2.28\%	
2009	1/1/2009	\$13.50	26.29\%		\$7.28	27.72\%	
2010	1/1/2010	\$16.45	53.88\%	-	\$8.87	55.61\%	-
2011	1/1/2011	\$19.95	86.62\%	21.28\%	\$12.37	117.02\%	39.46\%
2012	3/1/2012	\$21.00	96.45\%	27.66\%	\$15.37	169.65\%	73.28\%
2013	1/1/2013	\$23.00	115.15\%	39.82\%	\$18.25	220.18\%	105.75\%
2014	1/1/2014	\$24.00	124.51\%	45.90\%	\$21.25	272.81\%	139.57\%
2015	1/1/2015	\$24.00	124.51\%	45.90\%	\$21.25	272.81\%	139.57\%
2016	1/1/2016	\$25.00	133.86\%	51.98\%	\$22.25	290.35\%	150.85\%
2017	1/1/2017	\$26.00	143.22\%	58.05\%	\$23.25	307.89\%	162.12\%
2018	1/1/2018	\$27.00	152.57\%	64.13\%	\$24.25	325.44\%	173.39\%
2019	1/1/2019	\$27.00	152.57\%	64.13\%	\$24.25	325.44\%	173.39\%
2020	1/1/2020	\$27.00	152.57\%	64.13\%	\$24.25	325.44\%	173.39\%
Source: CPUC Communications Division Staff.							

There continues to be little effective competition for POTS services. If the market were sufficiently competitive, the greatest loss of demand would occur in wire centers exhibiting the poorest service quality. In fact, the greatest drop-off in demand continues to arise in wire centers with the best service quality records.

## Effects of geographic and other wire center attributes upon performance results

While examinations of individual wire centers is essential to isolating specific problem areas and sources of concern, it is also instructive to create groups of individual wire centers having similar geographic or other attributes. In Phase 1, ETI had constructed five different attribute dimensions - (1) the presence of fiber upgrades; (2) wire center size (number of access lines); (3) the percentage decrease (loss) in the number of access lines in service to competing providers and/or to competing services over the study period; (4) the AT\&T Technology Field Services (TRs) organization to which the wire center has been assigned; and (5) the population density of the area served by the wire center (households per square mile). For each of these five attribute dimensions, ETI defined a set of categories whose potential effect upon service quality was then individually examined. These were summarized in Table 4A. 11 in our Phase 1 Report, and in Table 4A. 12 of the Phase 1 Report, we showed, for each of these five attribute dimensions, the category in which each individual AT\&T wire center has been classified. ${ }^{15}$ In addition, Table 4A. 12 also provided the median household income for the population served from the specified wire center. Updated versions of these two Tables are provided below:

[^6]ECONOMICS AND

Table 4A.11   AT\&T CALIFORNIA			
WIRE CENTER ATTRIBUTE DIMENSIONS   AND CATEGORIES			
Attribute Dimension	Categories		


AT\&T CALIFORNIA WIRE CENTER ATTRIBUTE CLASSIFICATIONS									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	$\begin{aligned} & \text { Pct Line } \\ & \text { Loss } \\ & \text { Category } \end{aligned}$	Household   Density Category	AT\&T Field Operations District	Median Household Income Category
ACTON	661410	ACTNCA11	LOS ANGELES	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
AGUA DULCE	661351	AGDLCA11	LOS ANGELES	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
AGOURA	818600	AGORCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
ALBANY SOLANO	510001	ALBYCA11	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
ALLEGHANEY	530425	ALGHCA11	SIERRA	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
ALHAMBRA	626601	ALHBCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$55,000-\$66,999
ALAMEDA CENTRAL	510002	ALMDCA11	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
ALPINE	619700	ALPICA12	SAN DIEGO	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Southern CA	\$67,000-\$87,999
ANGELS CAMP	209150	ANCMCA01	CALAVERAS	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
ANGWIN	707275	ANGWCA11	NAPA	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
ANAHEIM LEMON	714701	ANHMCA01	ORANGE	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$55,000-\$66,999
ANAHEIM CYPRESS	714702	ANHMCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$55,000-\$66,999
ANAHEIM LA PALMA	714703	ANHMCA12	ORANGE	No	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$43,000-\$54,999
ANHM HILLS	714811	ANHMCA17	ORANGE	Yes	3000-10000 Lines	>80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
ANNAPOLIS	707322	ANNPCA11	SONOMA	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
ANTIOCH	925003	ANTCCA11	CONTRA COSTA	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
APTOS	831100	APTSCA12	SANTA CRUZ	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
ARCADIA	626602	ARCDCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	San Gabriel	\$67,000-\$87,999
ARCATA	707276	ARCTCA11	HUMBOLDT	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ARROYO GRANDE	805352	ARGRCA12	SAN LUIS OBISPO	No	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
AROMAS	831144	ARMSCA11	SAN BENITO	No	1001-2999 Lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
ARNOLD	209151	ARNLCA11	CALAVERAS	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
ANDERSON	530427	ARSNCA11	SHASTA	No	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ARLINGTON	951704	ARTNCA11	RIVERSIDE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$55,000-\$66,999
ARVIN	661353	ARVNCA11	KERN	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
SEQUOIA ASH MTN	559152	ASMTCA11	FRESNO	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
ATASCADERO	805354	ATSCCA11	SAN LUIS OBISPO	No	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
ATWATER	209153	ATWRCA12	MERCED	Yes	10001-20000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
AUBURN MAIN	530428	AUBNCA01	PLACER	Yes	10001-20000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
AUBURN PLACER HILLS	530429	AUBNCA11	PLACER	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
AVILA BEACH	805355	AVBHCA11	SAN LUIS OBISPO	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
AVENAL	559154	AVNLCA12	KINGS	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
BAKER	760705	BAKRCA11	SAN BERNARDINO	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
BALBOA	949706	BALBCA01	ORANGE	Yes	10001-20000 Lines	60\%-70\%	1800 + per Sq. Mile	Southern CA	\$88,000 +
BROCKWAY	530434	BCWYCA11	PLACER	No	3000-10000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
BODEGA BAY	707279	BDBACA11	SONOMA	No	1001-2999 Lines	60\%-70\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median   Household Income Category
BEALE	530431	BEALCA11	YUBA	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
BELL	323604	BELLCA11	LOS ANGELES	Yes	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
BIGGS	530432	BGGSCA11	BUTTE	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
BIG SUR	831101	BGSRCA11	MONTEREY	No	0-1000 Lines	<50\%	0-16 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
BRIDGEVILLE	707281	BGVLCA11	HUMBOLDT	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
BAKERSFIELD EMPIRE	661356	BKFDCA11	KERN	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
BAKERSFIELD MAIN FAIRI	661357	BKFDCA12	KERN	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
BAKERSFIELD COLUMBU؟	661358	BKFDCA13	KERN	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
BAKERSFIELD TEMPLE	661359	BKFDCA14	KERN	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
BAKERSFIELD METTLER	661360	BKFDCA15	KERN	No	0-1000 Lines	<50\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
BAKERSFIELD WEST ROS	661361	BKFDCA17	KERN	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
BAKERSFIELD NOMAD	661409	BKFDCA19	KERN	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
BERKELEY BANCROFT	510004	BKLYCA01	ALAMEDA	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
BOULDER CREEK	831102	BLCKCA11	SANTA CRUZ	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
BLUE LAKE	707278	BLLKCA11	HUMBOLDT	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
BLAIRSDEN	530433	BLRSCA12	PLUMAS	No	1001-2999 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
BENICIA	707277	BNCICA11	SOLANO	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
BANGOR	530430	BNGRCA11	BUTTE	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
BEN LOMOND	831103	BNLMCA11	SANTA CRUZ	No	1001-2999 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
BUENA PARK	714710	BNPKCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$67,000-\$87,999
BOONVILLE	707280	BNVLCA11	MENDOCINO	No	1001-2999 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
BURBANK PALM	818605	BRBNCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
BURBANK THORNTON	818606	BRBNCA13	LOS ANGELES	No	1001-2999 Lines	50\%-60\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
BRADLEY	805363	BRDLCA90	MONTEREY	No	0-1000 Lines	<50\%	0	Bay / Central Coast	0
BREA	714709	BREACA12	ORANGE	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
BURLINGAME	650006	BRLNCA01	SAN MATEO	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$88,000 +
BORREGO SPRINGS	760707	BRSPCA11	SAN DIEGO	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
BRENTWOOD	925007	BRWDCA12	CONTRA COSTA	Yes	10001-20000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Bay / Central Coast	\$88,000 +
BRAWLEY	760708	BRWLCA11	IMPERIAL	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$43,000-\$54,999
BISHOP RANCH	925082	BSRNCA70	CONTRA COSTA	No	3000-10000 Lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$88,000 +
BUTTE CITY	530435	BTCYCA11	GLENN	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
BETHEL ISLAND	925008	BTISCA11	CONTRA COSTA	Yes	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
BURRELL	559242	BURLCA11	FRESNO	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
BEVERLY HILLS	310607	BVHLCA01	LOS ANGELES	Yes	Over 20000 lines	50\%-60\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
BEAR VALLEY	209155	BVLYCA11	CALAVERAS	No	0-1000 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
BEAR VLLY SPRING	661403	BVSPCA11	KERN	No	1001-2999 Lines	>80\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
BAYWOOD PARK	805362	BYPKCA11	SAN LUIS OBISPO	No	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
CAMPO	619715	CAMPCA11	SAN DIEGO	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
COBB MOUNTAIN	707285	CBMTCA11	LAKE	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CHICO MAIN	530438	CHICCA01	BUTTE	Yes	Over 20000 lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CHALLANGE	530437	CHLNCA11	YUBA	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
CHUALAR	831104	CHLRCA11	MONTEREY	No	0-1000 Lines	50\%-60\%	0	Bay / Central Coast	0


Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household   Density Category	AT\&T Field Operations District	Median Household Income Category
CHULA VISTA THIRD AVEI	619718	CHVSCA11	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$43,000-\$54,999
CHULA VISTA APACHE	619719	CHVSCA12	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
CHOWCHILLA	559158	CHWCCA11	MADERA	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
CALABASAS PARK SORRE	818666	CLBSCA11	LOS ANGELES	Yes	10001-20000 Lines	60\%-70\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
CALABASAS LOS VIRGEN	818665	CLBSCA50	LOS ANGELES	No	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
CULVER CITY	310608	CLCYCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
COALINGA	559160	CLNGCA01	FRESNO	No	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CLEAR LAKE OAKS	707283	CLOKCA11	LAKE	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
CALPATRIA	760713	CLPTCA11	IMPERIAL	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
CALISTOGA	707282	CLSTCA11	NAPA	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
CLOVIS	559159	CLVSCA11	FRESNO	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
CALEXICO	760712	CLXCCA12	IMPERIAL	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$0-\$42,999
CAMBRIA	805364	CMBACA11	SAN LUIS OBISPO	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
CAMP NELSON	559156	CMNLCA11	tulare	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
CAMP PENDLETON	760714	CMPDCA01	SAN DIEGO	No	0-1000 Lines	60\%-70\%		Southern CA	0
CAMPTONVILLE	530436	CMPVCA11	YUBA	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
COMPTON	310609	CMTNCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
CONCORD	925009	CNCRCA01	CONTRA COSTA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
CANOGA PARK	818610	CNPKCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
CENTRAL VALLEY	530528	CNVYCA11	SHASTA	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CLOVERDALE	707284	CODLCA11	SONOMA	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
COLMA DALY CITY	650010	COLACA01	SAN MATEO	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
CORDELIA	707286	CORDCA12	SOLANO	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
CORONA	951721	CORNCA11	RIVERSIDE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
COLTON	909720	COTNCA11	SAN BERNARDINO	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$43,000-\$54,999
CROCKETT	510011	CRCTCA02	CONTRA COSTA	No	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
CORONA DEL MAR	949722	CRDMCA11	ORANGE	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
CARLSBAD HARDING	760716	CRLSCA11	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$67,000-\$87,999
CARLSBAD LA COSTA	760717	CRLSCA12	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
CARMEL MAIN	831105	CRMLCA11	MONTEREY	Yes	10001-20000 Lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
CORONADO	619723	CRNDCA11	SAN DIEGO	Yes	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
CORNING	530440	CRNGCA12	TEHAMA	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CARUTHERS	559157	CRTHCA11	FRESNO	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
CARMEL VALLEY	831106	CRVYCA11	MONTEREY	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$88,000 +
COSTA MESA	949725	CSMSCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$67,000-\$87,999
CASTAIC	661408	CSTCCA11	LOS ANGELES	Yes	10001-20000 Lines	60\%-70\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
CASTROVILLE	831107	CSVLCA11	MONTEREY	No	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
COTATI	707287	CTTICA12	SONOMA	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
COULTERVILLE	209161	CTVLCA11	MARIPOSA	No	$0-1000$ Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
COTTONWOOD	530441	CTWDCA11	TEHAMA	No	3000-10000 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CROWS LANDING	209162	CWLDCA12	StANISLAUS	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
CAYUCOS	805366	CYCSCA11	SAN LUIS OBISPO	No	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median   Household Income Category
CLAYTON	925081	CYTNCA11	CONTRA COSTA	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
COYOTE WELLS	760726	CYWLCA11	IMPERIAL	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
DANVILLE MAIN 12	925012	DAVLCA12	CONTRA COSTA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
DANVILLE TASSAJARA 13	925085	DAVLCA13	CONTRA COSTA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
DAVIS	530442	DAVSCA11	YOLO	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
DELANO	661367	DELNCA11	TULARE	Yes	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
DINUBA	559164	DINBCA01	TULARE	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
DIXON	707443	DIXNCA11	SOLANO	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
DEL MAR	858727	DLMRCA12	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
DEL REY	559163	DLRYCA11	FRESNO	No	0-1000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
DULZURA	619728	DLZRCA11	SAN DIEGO	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Southern CA	\$67,000-\$87,999
DUNNIGAN	530445	DNGNCA12	YOLO	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
DUNSMUIR	530446	DNSMCA11	SISKIYOU	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ALTA DUTCH FLATS	530447	DTFLCA11	PLACER	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
DOWNIEVILLE	530444	DWNVCA11	SIERRA	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
EDWARDS	661369	EDWRCA01	KERN	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
ELK CREEK	530448	EKCKCA11	GLENN	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
EL CAJON	619729	ELCJCA11	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$55,000-\$66,999
EL CENTRO	760730	ELCNCA01	IMPERIAL	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$43,000-\$54,999
ELK	707288	ELK CA11	MENDOCINO	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
EL MONTE	626611	ELMNCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$43,000-\$54,999
RICH APPIAN WAY EL SOE	510013	ELSBCA11	CONTRA COSTA	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
EL SEGUNDO DOUGLAS	310613	ELSGCA12	LOS ANGELES	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
EL TORO	949731	ELTRCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
ENCINITAS	760732	ENCTCA12	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
EARLIMART	661368	ERLMCA11	TULARE	No	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ESCALON	209192	ESCLCA11	SAN JOAQUIN	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
ESCONDIDO	760733	ESCNCA01	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$55,000-\$66,999
ESPARTO	530450	ESPRCA11	YOLO	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
EUREKA	707289	EURKCA01	HUMBOLDT	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
FELTON	831108	FETNCA11	SANTA CRUZ	No	3000-10000 Lines	60\%-70\%	$95-449$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
FALLBROOK	760735	FLBKCA12	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$55,000-\$66,999
FILLMORE	805370	FLMRCA11	VENTURA	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
FOLSOM NIMBUS	916453	FLSMCA12	SACRAMENTO	Yes	3000-10000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$88,000 +
FOLSOM EL DORADO HILI	916454	FLSMCA13	SACRAMENTO	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
FOLSOM BLUE RAVINE	916536	FLSMCA14	SACRAMENTO	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
FONTANA	909736	FNTACA11	SAN BERNARDINO	Yes	Over 20000 lines	>80\%	95-449 per Sq. Mile	Southern CA	\$55,000-\$66,999
FIREBAUGH	559166	FRBHCA11	FRESNO	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FURNACE CREEK	760738	FRCKCA11	SAN BERNARDINO	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
FAIRFIELD	707290	FRFDCA01	SOLANO	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
FRENCH GULCH	530455	FRGLCA11	SHASTA	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
FREMONT MAIN 11	510014	FRMTCA11	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire   Center	CLLI	County	Fiber	Wire Center Size Category		Household Density Category	AT\&T Field Operations District	Median Household Income Category
FREMONT ADAMS OLIVEF	510015	FRMTCA12	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
FAIR OAKS	916451	FROKCA11	SACRAMENTO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
FRESNO MAIN	559168	FRSNCA01	FRESNO	Yes	Over 20000 lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FRESNO BALDWIN	559169	FRSNCA11	FRESNO	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FRESNO CLINTON	559172	FRSNCA12	FRESNO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FRESNO SIERRA	559170	FRSNCA13	FRESNO	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
FRESNO WEST HIGHWAY	559245	FRSNCA14	FRESNO	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
FRESNO WOODWARD	559247	FRSNCA15	FRESNO	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
FARMERSVILLE	559165	FRVLCA11	tulare	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FORESTVILLE	707291	FSVLCA11	SONOMA	No	1001-2999 Lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
FORT BRAGG	707292	FTBRCA02	MENDOCINO	No	3000-10000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
FORTUNA	707293	FTUNCA11	HUMBOLDT	No	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FULLERTON	714737	FUTNCA01	ORANGE	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$67,000-\$87,999
FIVE POINTS	559167	FVPNCA11	FRESNO	No	0-1000 Lines	<50\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
FRAZIER PARK	661371	FZPKCA11	KERN	No	1001-2999 Lines	60\%-70\%	$95-449$ per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
GALT	209171	GALTCA11	SACRAMENTO	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
GLENDALE	818614	GLDLCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
GREEN FIELD	831109	GNFDCA11	MONTEREY	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
GONZALES	831110	GNZLCA11	MONTEREY	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
GERBER	530458	GRBRCA11	TEHAMA	No	0-1000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
GRIDLEY	530461	GRDLCA11	BUTTE	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
GARDENA	310615	GRDNCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
EUCLID	714739	GRGVCA01	ORANGE	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$43,000-\$54,999
GRENADA	530460	GRNDCA13	SISKIYOU	No	0-1000 Lines	70\%-80\%	0	Northern CA / Central Valley	0
GEORGETOWN	530457	GRTWCA11	EL DORADO	No	1001-2999 Lines	<50\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
GRASS VALLEY	530459	GRVYCA01	NEVADA	No	Over 20000 lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LAKE OF THE PINE	530532	GRVYCA11	NEVADA	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
WILDWOOD	530535	GRVYCA12	NEVADA	No	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
GOSHEN	559246	GSHNCA11	tulare	No	1001-2999 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
GUALALA	707295	GULLCA11	MENDOCINO	No	1001-2999 Lines	<50\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
GUSTINE	209174	GUSTCA11	MERCED	No	1001-2999 Lines	60\%-70\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
GUERNEVILLE	707296	GUVLCA11	SONOMA	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
GROVELAND	209173	GVLDCA11	tuolumne	No	3000-10000 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
GEYERSVILLE	707294	GYVLCA11	SONOMA	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
GAZELLE	530456	GZLLCA11	SISKIYOU	No	0-1000 Lines	60\%-70\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
HERALD	209176	HERLCA11	SACRAMENTO	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
HIGHLAND	909741	HGLDCA11	SAN BERNARDINO	Yes	10001-20000 Lines	>80\%	95-449 per Sq. Mile	Southern CA	\$55,000-\$66,999
HUGHSON	209177	HGSNCA11	StANISLAUS	Yes	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
HEALDSBURG	707297	HLBGCA11	SONOMA	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
HOLLISTER	831111	HLSTCA11	SAN BENITO	Yes	10001-20000 Lines	70\%-80\%	0-16 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
Holtville	760742	HLVLCA11	IMPERIAL	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$0-\$42,999
HOLLYWOOD	323616	HLWDCA01	LOS ANGELES	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	$\begin{aligned} & \text { Pct Line } \\ & \text { Loss } \\ & \text { Category } \end{aligned}$	Household   Density Category	AT\&T Field Operations District	Median   Household Income Category
HALF MOON BAY	650016	HMBACA12	SAN MATEO	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$88,000 +
HAMILTON CITY	530462	HMCYCA11	GLENN	No	0-1000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
HOMEWOOD	530463	HMWDCA11	EL DORADO	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
HANFORD	559175	HNFRCA01	KINGS	Yes	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
HUNTINGTON PARK	323617	HNPKCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
HOPLAND	707298	HPLDCA12	MENDOCINO	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
HoRNBROOK	530464	HRBKCA11	SISKIYOU	No	0-1000 Lines	<50\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
HERCULES PINOLE	510080	HRCLCA11	CONTRA COSTA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
HURON	559178	HURNCA11	FRESNO	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
HAWTHORNE	310618	HWTHCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
HYDESVILLE	707299	HYVLCA11	HUMBOLDT	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
HAYWARD MAIN	510017	HYWRCA01	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
HAYWARD DEPOT	510018	HYWRCA11	ALAmeda	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
IGNACIO	415019	IGNCCA12	MARIN	No	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
INGLEWOOD	310619	IGWDCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
IMPERIAL BEACH	619744	IMBHCA11	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$43,000-\$54,999
IMPERIAL	760743	IMPRCA11	IMPERIAL	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$67,000-\$87,999
INVERNESS	415020	INVRCA11	MARIN	No	0-1000 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
IONE	209179	IONECA11	AMADOR	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
IRVINE	949745	IRVNCA01	ORANGE	Yes	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$88,000 +
IRVINE AIRPORT	949807	IRVNCA11	ORANGE	Yes	10001-20000 Lines	50\%-60\%	$1800+$ per Sq. Mile	Southern CA	\$67,000-\$87,999
SPECTRUM IRVINE	949810	IRVNCA12	ORANGE	Yes	3000-10000 Lines	<50\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
ivanhoe	559180	IVNHCA11	tulare	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
JAMUL	619851	Jamlcabo	SAN DIEGO	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$88,000 +
JACUMBA	619746	JCMBCA11	SAN DIEGO	No	1001-2999 Lines	60\%-70\%	0	Southern CA	0
JACKSON	209181	JCSNCA01	AMADOR	No	3000-10000 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
JAMESTOWN	209182	JMTWCA11	TUOLUMNE	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
JULIAN	760748	JULNCA12	SAN DIEGO	No	1001-2999 Lines	50\%-60\%	17-94 per Sq. Mile	Southern CA	\$43,000-\$54,999
KINGSBURG	559183	KGBGCA11	tulare	No	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
KING CITY	831112	KGCYCA11	MONTEREY	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
KELSEYVILLE	707300	KLVLCA12	LAKE	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
KNIGHTS FERRY	209184	KNFYCA11	Stanislaus	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
KYBURZ	530465	KYBRCA11	EL DORADO	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
LA CANADA OAK GROVE	818620	LACNCA11	LOS ANGELES	No	0-1000 Lines	50\%-60\%	0	San Gabriel	0
LA CRESCENTA	818621	LACRCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
LA HONDA	650021	LAHNCA11	SAN MATEO	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
LA Jolla GIRARD	858750	LAJLCA11	SAN DIEGO	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
LA MESA	619752	LAMSCA01	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$55,000-\$66,999
LAMONT	661372	LAMTCA11	KERN	No	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LATON	559186	LATNCA11	FRESNO	No	0-1000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
LOCKEFORD	209190	LCFRCA11	SAN JOAQUIN	No	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LEBEC	661373	LEBCCA11	KERN	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median   Household Income Category
PINE MOUNTAIN	661404	LEBCCA12	KERN	No	1001-2999 Lines	50\%-60\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LEMORE MAIN	559188	LEMRCA11	KINGS	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LEMORE WYMAN	559189	LEMRCA12	KINGS	No	0-1000 Lines	>80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
LAFAYETTE	925022	LFYTCA11	CONTRA COSTA	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
LAGUNA NIGUEL	949749	LGNGCA12	ORANGE	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$88,000 +
LE GRANDE	209187	LGRDCA11	MERCED	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LAGRANDE D PEDRO	209185	LGRNCA12	STANISLAUS	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
LAKE BERRYESSA	707301	LKBRCA11	NAPA	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
LAKE LOS ANGELES	661405	LKLACA11	LOS ANGELES	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LAKEPORT	707302	LKPTCA02	LAKE	No	3000-10000 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LAKESIDE	619751	LKSDCA12	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$67,000-\$87,999
LOYALTON	530471	LLTNCA11	PLUMAS	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
LINCOLN	916467	LNCLCA11	PLACER	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
LEONA VALLEY	661374	LNVYCA11	LOS ANGELES	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
LODI	209191	LODICA01	SAN JOAQUIN	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
LOLITA	707303	LOLTCA11	HUMBOLDT	No	0-1000 Lines	60\%-70\%	0	Northern CA / Central Valley	0
LOOMIS	916470	LOMSCA11	PLACER	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
LOMITA	310622	LOMTCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
LARKSPUR CORTE MADE।	415023	LRKSCA11	MARIN	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
MADISON 02 MO	213624	LSANCA02	LOS ANGELES	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
MADISON 03 MA	213625	LSANCA03	LOS ANGELES	Yes	10001-20000 Lines	50\%-60\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN PLEASANT	323626	LSANCA05	LOS ANGELES	No	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
UNION	213627	LSANCA06	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN AIRPORT	310628	LSANCA07	LOS ANGELES	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
LSAN MELROSE	323629	LSANCA08	LOS ANGELES	No	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
RICHMOND	213630	LSANCA09	LOS ANGELES	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN WEBSTER	323631	LSANCA10	LOS ANGELES	No	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
RAMPART	213632	LSANCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
NORMANDY	323633	LSANCA12	LOS ANGELES	No	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
LSAN PLYMOUTH	323634	LSANCA13	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN ADAMS	323635	LSANCA14	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN AXMINSTER	323636	LSANCA15	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN CAPITOL	323638	LSANCA23	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$43,000-\$54,999
LSAN SUNSET	323640	LSANCA29	LOS ANGELES	Yes	10001-20000 Lines	60\%-70\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
LSAN ANGELES	323641	LSANCA34	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$0-\$42,999
LSAN MONTEBELLO	323642	LSANCA35	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$43,000-\$54,999
LSAN REPUBLIC	323643	LSANCA38	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
LSAN CLINTON	323644	LSANCA56	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$55,000-\$66,999
LOS ALTOS	650024	LSATCA11	SANTA CLARA	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
LOS BANOS	209193	LSBNCA12	MERCED	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LOS MOLINOS	530469	LSMLCA11	TEHAMA	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
LEWISTON	530466	LSTNCA11	TRINITY	No	0-1000 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	$\begin{aligned} & \text { Pct Line } \\ & \text { Loss } \\ & \text { Category } \end{aligned}$	Household   Density Category	AT\&T Field Operations District	Median   Household Income Category
LITTLE ROCK	661375	LTRKCA11	LOS ANGELES	No	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
LIVERMORE	925025	LVMRCA11	ALAMEDA	Yes	Over 20000 lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
LIVE OAK	530468	LVOKCA11	SUTTER	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
LOWER LAKE	707304	LWLKCA11	LAKE	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MADERA MAIN	559194	MADRCA11	MADERA	Yes	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
MADERA BONNADELLI	559243	MADRCA12	MADERA	Yes	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
MARINA	831113	MARNCA11	MONTEREY	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
MODESTO MAIN	209199	MDSTCA02	StanisLaus	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
MODESTO KELLOG SOUT	209200	MDSTCA03	StanisLaus	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
MODESTO KINGSWOOD C	209201	MDSTCA04	STANISLAUS	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
MODESTO TALLY	209248	MDSTCA05	STANISLAUS	Yes	3000-10000 Lines	>80\%	1800 + per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
MODESTO DAVIS	209249	MDSTCA52	StANISLAUS	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	-
MIDDLETOWN	707306	MDTWCA11	LAKE	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
MOKELUMNE HILL	209202	MKHLCA12	CALAVERAS	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
MCKINLEYVILLE	707307	MKVLCA11	HUMBOLDT	No	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
MILLBRAE	650026	MLBRCA11	SAN MATEO	Yes	3000-10000 Lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$88,000 +
MILPITAS	408114	MLPSCA11	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
MILL VALLEY	415027	MLVYCA01	MARIN	Yes	10001-20000 Lines	60\%-70\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$88,000 +
MENDOCINO	707305	MNDCCA11	MENDOCINO	No	3000-10000 Lines	50\%-60\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MENDOTA	559195	MNDTCA11	FRESNO	No	1001-2999 Lines	70\%-80\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MENLO PARK	650028	MNPKCA11	SAN MATEO	Yes	10001-20000 Lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
MONTE RIO	707309	MNRICA11	SONOMA	No	1001-2999 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MoJAVE	661376	MOJVCA01	KERN	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
MORAGA	925029	MORGCA12	CONTRA COSTA	No	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
MORRO BAY	805378	MRBACA11	SAN LUIS OBISPO	No	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
MERCED	209196	MRCDCA01	MERCED	Yes	Over 20000 lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
MERIDAN	530473	MRDNCA11	SUTTER	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
MIRANDA	707308	MRNDCA11	HUMBOLDT	No	$0-1000$ Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MURPHYS	209203	MRPHCA11	CALAVERAS	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MOORPARK	805377	MRPKCA12	VENTURA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
MARTINEZ	925030	MRTZCA11	CONTRA COSTA	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
MOSS BEACH	650031	MSBHCA11	SAN MATEO	No	3000-10000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Bay / Central Coast	\$88,000 +
MISSION VIEJO	949806	MSVJCAAT	ORANGE	Yes	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
MONTAGUE	530529	MTAGCA11	SISKIYOU	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MOUNTAIN PASS	760753	MTPSCA11	SAN BERNARDINO	No	0-1000 Lines	50\%-60\%	0	Southern CA	0
MONTEREY	831115	MTRYCA01	MONTEREY	No	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
MOUNT SHASTA	530474	MTSHCA12	SISKIYOU	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
MOUNTAIN VIEW	650032	MTVWCA11	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
MARYSVILLE	530472	MYVICA01	YUBA	Yes	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
NAPA	707310	NAPACA01	NAPA	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
NICOLAUS	530477	NCLSCA12	SUTTER	No	0-1000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
EDGEWOOD N HIGHL	916478	NHLDCA11	SACRAMENTO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household   Density Category	AT\&T Field Operations District	Median Household Income Category
NEWHALL	661379	NHLLCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
NHWD LANKERSHIM	818646	NHWDCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
NHWD MAGNOLIA	818647	NHWDCA02	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
NICE	707311	NICECA11	LAKE	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
NICASIO	415033	NICSCA11	MARIN	No	0-1000 Lines	<50\%	-	Northern CA / Central Valley	0
NILAND MAIN	760855	NILDCA11	IMPERIAL	No	0-1000 Lines	70\%-80\%	$0-16$ per Sq. Mile	Southern CA	\$0-\$42,999
NINLAND BOMBAY BEACF	760856	NILDCA12	IMPERIAL	No	0-1000 Lines	>80\%	0-16 per Sq. Mile	Southern CA	\$0-\$42,999
NIPOMO	805380	NIPMCA11	SAN LUIS OBISPO	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
NORTHRIDGE	818648	NORGCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
WABASH	916479	NSCRCA11	SACRAMENTO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
NORTH NATOMAS	916537	NSCRCA12	SACRAMENTO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
NORTH SAN JUAN	530480	NSJNCA11	NEVADA	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
NATIONAL CITY HIGHLANI	619754	NTCYCA11	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$0-\$42,999
NEVADA CITY	530475	NVCYCA11	NEVADA	No	3000-10000 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
NEWCASTLE	916476	NWCSCA11	PLACER	No	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
NEWMAN	209204	NWMNCA12	StANISLAUS	No	1001-2999 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
NORTH YUBA	530481	NYUBCA11	YUBA	No	1001-2999 Lines	50\%-60\%	0	Northern CA / Central Valley	0
OCCIDENTAL	707312	OCDNCA11	SONOMA	No	1001-2999 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
OCEANSIDE MISSION	760758	OCSDCA11	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$55,000-\$66,999
OJAI	805382	OJAICA11	VENTURA	No	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
OAKDALE	209205	OKDLCA11	STANISLAUS	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
OAKLAND FRANKLIN	510036	OKLDCA03	ALAMEDA	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
OAKLAND KELLOGFRUITV	510037	OKLDCA04	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Bay / Central Coast	\$0-\$42,999
OAKLAND 45TH OLYMPICI	510038	OKLDCA11	ALAmeda	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
OAKLAND HOLLY	510039	OKLDCA12	ALAmEDA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
OAKLAND MOUNTAIN	510040	OKLDCA13	ALAMEDA	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Bay / Central Coast	\$88,000 +
OAKLEY	925041	OKLYCA11	CONTRA COSTA	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
OAKVIEW	805381	OKVWCA11	VENTURA	No	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
EXPORT OILDALE	661383	OLDLCA11	KERN	Yes	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
ORANGE COVE	559206	ORCVCA11	FRESNO	No	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ORLAND	530483	ORLDCA11	GLENN	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ORINDA	925042	ORNDCA11	CONTRA COSTA	Yes	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
ORANGE CHAPMAN	714759	ORNGCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
ORANGE OLIVE	714760	ORNGCA13	ORANGE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
ORANGE WEST	714761	ORNGCA14	ORANGE	Yes	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$55,000-\$66,999
OROSI	559207	ORSICA11	tulare	No	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
ORANGEVALE	916482	ORVACA11	SACRAMENTO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
OROVILLE MAIN	530484	ORVLCA11	BUTTE	No	10001-20000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
OROVILLE EAST	530485	ORVLCA12	BUTTE	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
OTAY MESA	619853	OTMSCA11	SAN DIEGO	Yes	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Southern CA	\$88,000 +
PAUMA VALLEY	760764	PALACA11	SAN DIEGO	No	1001-2999 Lines	50\%-60\%	17-94 per Sq. Mile	Southern CA	\$67,000-\$87,999
GARNET	858762	PCBHCA01	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$67,000-\$87,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median   Household Income Category
HORNBLEND	858763	PCBHCA11	SAN DIEGO	Yes	1001-2999 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
PACIFICA	650043	PCFCCA11	SAN MATEO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
PEDLEY	951765	PDLYCA11	RIVERSIDE	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$55,000-\$66,999
PIRU	805386	PIRUCA11	VENTURA	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
PALO ALTO MAIN	650045	PLALCA02	SANTA CLARA	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
PALO ALTO SOUTH	650046	PLALCA12	SANTA CLARA	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
PLACENTIA	714767	PLCNCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
PALMDALE	661384	PLDLCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
PALMDALE EAST 47TH ST	661412	PLDLCA11	LOS ANGELES	Yes	3000-10000 Lines	>80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
PLEASANT GROVE	916491	PLGVCA12	PLACER	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
PLYMOUTH	209212	PLMOCA11	AMADOR	No	3000-10000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
PLANADA	209211	PLNDCA11	MERCED	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
PLEASANTON MAIN HOPY	925047	PLTNCA12	ALAMEDA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
PLEASANTON HACIENDA	925083	PLTNCA13	ALAMEDA	No	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
PLACERVILLE MAIN	530489	PLVLCA11	EL DORADO	No	Over 20000 lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
PLACERVILLE NIAGARA	530490	PLVLCA12	EL DORADO	No	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
POINT ARENA	707315	PNARCA11	MENDOCINO	No	1001-2999 Lines	<50\%	0	Northern CA / Central Valley	0
PINECREST	209209	PNCRCA11	TUOLUMNE	No	1001-2999 Lines	<50\%	0	Northern CA / Central Valley	0
PINE VALLEY	619766	PNVYCA11	SAN DIEGO	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Southern CA	\$67,000-\$87,999
POWAY MIDLAND	858768	POWYCA11	SAN DIEGO	Yes	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
PEPPERWOOD	707313	PPWDCA11	HUMBOLDT	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
PARADISE MAIN	530486	PRDSCA11	BUTTE	No	10001-20000 Lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
PARADISE PINES	530487	PRDSCA12	BUTTE	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
PARLIER	559208	PRLRCA11	FRESNO	Yes	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
PARAMOUNT	562649	PRMTCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
POINT REYES	415048	PRSNCA11	MARIN	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
PITTSBURG MAIN	925049	PSBGCA01	CONTRA COSTA	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
PITTSBURG BAY POINT W	925050	PSBGCA11	CONTRA COSTA	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
PISMO BEACH	805387	PSBHCA11	SAN LUIS OBISPO	No	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
PESCADERO	650051	PSCDCA11	SAN MATEO	No	1001-2999 Lines	<50\%	0	Bay / Central Coast	0
PASADENA MT WILSON G	626650	PSDNCA11	LOS ANGELES	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	San Gabriel	\$67,000-\$87,999
PASADENA LAKE	626651	PSDNCA12	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	San Gabriel	\$67,000-\$87,999
PASKENTA	530488	PSKNCA11	TEHAMA	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
PASO ROBLES	805385	PSRBCA01	SAN LUIS OBISPO	No	10001-20000 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
PETALUMA	707314	PTLMCA01	SONOMA	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
PORTOLA	530492	PTOLCA01	PLUMAS	No	1001-2999 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
PORTERVILLE	559213	PTVLCA11	TULARE	Yes	Over 20000 lines	60\%-70\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
POTTER VALLEY	707316	PTVYCA11	MENDOCINO	No	1001-2999 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
PIXLEY	559210	PXLYCA11	TULARE	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
QUINCY	530493	QNCYCA12	PLUMAS	No	3000-10000 Lines	<50\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
RAMONA	760769	RAMNCA11	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$67,000-\$87,999
RANCHO BERNARDO	858770	RBRNCA11	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median Household Income Category
STANFORD RANCH	916541	RCKLCA01	PLACER	Yes	10001-20000 Lines	>80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
ROCKLIN	916527	RCKLCA11	PLACER	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
RICHMOND SF	510052	RCMDCA11	CONTRA COSTA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
RICHVALE	530496	RCVACA11	BUTTE	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	-
RED BLUFF	530494	RDBLCA01	TEHAMA	No	10001-20000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
REDWOOD CITY	650053	RDCYCA01	SAN MATEO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
REDDING MAIN	530495	RDNGCA02	SHASTA	Yes	Over 20000 lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
REDDING ENTERPR	530531	RDNGCA11	SHASTA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
RESEDA	818652	RESDCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
RIO DELL	707317	RIDECA11	HUMBOLDT	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
RIO LINDA	916526	RILNCA12	SACRAMENTO	No	3000-10000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
RIALTO	909773	RILTCA11	SAN BERNARDINO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$43,000-\$54,999
RANCHO MURIETTA	916533	RNMRCA11	SACRAMENTO	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
RANCHO PENASQUITOS	858854	RNPSCA11	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
RANCHO SAN DIEGO	619852	RNSDCA11	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
ROSEMEAD	626654	ROSMCA11	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	San Gabriel	\$43,000-\$54,999
RANCHO SANTA FE	858771	RSFECA12	SAN DIEGO	Yes	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Southern CA	\$88,000 +
ROSAMOND	661388	RSMDCA11	KERN	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
R S MARGARITA	949808	RSMGCA11	ORANGE	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$88,000 +
ROHNERT PARK	707337	RTPKCA11	SONOMA	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
RIVERDALE	559215	RVDLCA11	FRESNO	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
RIVERBANK	209214	RVRBCA11	StANISLAUS	Yes	3000-10000 Lines	>80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
RIVERSIDE ORANGE	951774	RVSDCA01	RIVERSIDE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$55,000-\$66,999
WOODCREST	951775	RVSDCA11	RIVERSIDE	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$88,000 +
SAUGUS	661407	SAGSCA11	LOS ANGELES	Yes	10001-20000 Lines	>80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
SANTEE	619795	SANTCA01	SAN DIEGO	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
SATICOY	805391	SATCCA12	VENTURA	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
SEBASTAPOL	707321	SBSTCA11	SONOMA	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
SACRAMENTO MN	916497	SCRMCA01	SACRAMENTO	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SCRM IVANHOE	916498	SCRMCA02	SACRAMENTO	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
SCRM GARDEN	916499	SCRMCA03	SACRAMENTO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SCRM GLADSTONE	916500	SCRMCA11	SACRAMENTO	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
SCRM EMPIRE	916501	SCRMCA12	SACRAMENTO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SCRM FRUITRIDGE	916502	SCRMCA13	SACRAMENTO	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SCOTTS VALLEY	831116	SCVYCA01	SANTA CRUZ	Yes	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
SODA SPRINGS	530508	SDSPCA11	NEVADA	No	1001-2999 Lines	50\%-60\%	0	Northern CA / Central Valley	0
SELMA	559217	SELMCA11	FRESNO	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SEASIDE	831117	SESDCA11	MONTEREY	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
SOUTH GATE	323655	SGATCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$0-\$42,999
SHINGLE SPRINGS	530504	SGSPCA11	EL DORADO	Yes	10001-20000 Lines	70\%-80\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
SHAFTER	661392	SHFTCA11	KERN	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
SHASTA LAKE	530503	SHLKCA01	SHASTA	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	$\begin{aligned} & \text { Pct Line } \\ & \text { Loss } \\ & \text { Category } \end{aligned}$	Household Density Category	AT\&T Field Operations District	Median   Household Income Category
SHERMAN OAKS	818656	SHOKCA01	LOS ANGELES	No	Over 20000 lines	60\%-70\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
SHOSHONE	760796	SHSHCA11	SAN BERNARDINO	No	0-1000 Lines	<50\%	0	Southern CA	0
SIMI	805393	SImical1	VENTURA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$88,000 +
S J CAPISTRANO	949791	SJCPCA12	ORANGE	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$67,000-\$87,999
StOCKTON MAIN	209220	SKTNCA01	SAN JOAQUIN	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
StOCKTON GRANITE	209221	SKTNCA11	SAN JOAQUIN	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
STOCKTON ASHLEY	209222	SKTNCA12	SAN JOAQUIN	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
STOCKTON REDWOOD	209223	SKTNCA14	SAN JOAQUIN	Yes	3000-10000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
SOLEDAD	831118	SLDDCA11	MONTEREY	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
SOLEMINT	661394	SLMNCA11	LOS ANGELES	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
SALINAS MAIN	831119	SLNSCA01	MONTEREY	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
HICKORY SALINAS	831120	SLNSCA11	MONTEREY	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
GLENVIEW	831121	SLNSCA12	MONTEREY	No	1001-2999 Lines	60\%-70\%	$95-449$ per Sq. Mile	Bay / Central Coast	\$88,000 +
HUNTER	831122	SLNSCA13	MONTEREY	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$88,000 +
MORO	831123	SLNSCA14	MONTEREY	No	3000-10000 Lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
SILVERADO	714797	SLVRCA11	ORANGE	No	0-1000 Lines	50\%-60\%	17-94 per Sq. Mile	Southern CA	\$88,000 +
SMARTSVILLE	530507	SmAVCA11	YUBA	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
SAN ANDREAS	209216	SNADCA11	CALAVERAS	No	3000-10000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
BUSH	714788	SNANCA01	ORANGE	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$43,000-\$54,999
BRISTOL	714789	SNANCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$67,000-\$87,999
SANTA ANA WEST SNAN E	714804	SNANCA12	ORANGE	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$55,000-\$66,999
SAN ARDO	831124	SNARCA11	MONTEREY	No	0-1000 Lines	50\%-60\%	0	Bay / Central Coast	0
SAN BRUNO	650055	SNBUCA02	SAN MATEO	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SAN CLEMENTE	949776	SNCLCA12	ORANGE	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Southern CA	\$88,000 +
SAN CARLOS	650056	SNCRCA11	SAN MATEO	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SANTA CRUZ	831125	SNCZCA01	SANTA CRUZ	Yes	Over 20000 lines	60\%-70\%	95-449 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SANTA CRUZ CAPITOLA	831126	SNCZCA11	SANTA CRUZ	Yes	Over 20000 lines	70\%-80\%	$95-449$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SNDG C STREET	619777	SNDGCA01	SAN DIEGO	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Southern CA	\$43,000-\$54,999
SNDG UNIVERSITY	619778	SNDGCA02	SAN DIEGO	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Southern CA	\$67,000-\$87,999
SNDG LINDA VISTA	858779	SNDGCA03	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
SNDG SAIPAN	619780	SNDGCA05	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Southern CA	\$55,000-\$66,999
SNDG 37TH STREET	619781	SNDGCA06	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$43,000-\$54,999
SNDG COLLEGE	619782	SNDGCA11	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$55,000-\$66,999
SNDG MARKET STREET	619783	SNDGCA12	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$43,000-\$54,999
SNDG TENNYSON	619784	SNDGCA14	SAN DIEGO	Yes	10001-20000 Lines	70\%-80\%	1800 + per Sq. Mile	Southern CA	\$67,000-\$87,999
SNDG REGENTS	858785	SNDGCA15	SAN DIEGO	Yes	Over 20000 lines	60\%-70\%	450-1799 per Sq. Mile	Southern CA	\$67,000-\$87,999
SNDG MIRA MESA	858786	SNDGCA16	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
SF BUSH PINE	415058	SNFCCA01	SAN FRANCISCO	Yes	Over 20000 lines	50\%-60\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
SF MARKET MCCOPPIN	415059	SNFCCA04	SAN FRANCISCO	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SF MISSION 25TH ST	415060	SNFCCA05	SAN FRANCISCO	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SF JUNIPER ONONDAGA	415061	SNFCCA06	SAN FRANCISCO	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SF LARKIN STEINER	415067	SNFCCA12	SAN FRANCISCO	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median Household Income Category
SF EVERGREEN 9TH AVE	415064	SNFCCA13	SAN FRANCISCO	Yes	Over 20000 lines	60\%-70\%	1800 + per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SF MONTROSE 19TH	415065	SNFCCA14	SAN FRANCISCO	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SF THIRD ST	415066	SNFCCA17	SAN MATEO	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
SF FOLSOM	415068	SNFCCA21	SAN FRANCISCO	Yes	10001-20000 Lines	50\%-60\%	1800 + per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN GABRIEL	626658	SNGBCA01	LOS ANGELES	No	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	San Gabriel	\$67,000-\$87,999
SAN GERONIMO	415069	SNGNCA11	MARIN	No	1001-2999 Lines	60\%-70\%	$95-449$ per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
SAN JUAN BAUSTISTA	831127	SNJNCA11	SAN benito	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
SAN JOSE MAIN	408128	SNJSCA02	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SAN JOSE WHITE RD	408129	SNJSCA11	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SAN JOSE DIAL WAY	408130	SNJSCA12	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN JOSE CHYNOWETH	408131	SNJSCA13	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
SAN JOSE FOXWORTHY	408132	SNJSCA14	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN JOSE EVERGREEN S	408133	SNJSCA15	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN JOSE ALMADEN VALI	408134	SNJSCA18	SANTA CLARA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN JOSE JUNCTION	408145	SNJSCA21	SANTA CLARA	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN JoSe balley	408142	SNJSCA22	SANTA CLARA	No	$0-1000$ Lines	50\%-60\%	0	Bay / Central Coast	0
SAN LUCAS	831135	SNLCCA11	MONTEREY	No	$0-1000$ Lines	50\%-60\%	0	Bay / Central Coast	0
SAN LEANDRO	510070	SNLNCA11	ALAMEDA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
SAN LUIS OBISPO	805389	SNLOCA01	SAN LUIS OBISPO	Yes	10001-20000 Lines	60\%-70\%	$0-16$ per Sq. Mile	Bay / Central Coast	\$43,000-\$54,999
SAN MARTIN	408136	SNMACA11	SANTA CLARA	No	1001-2999 Lines	60\%-70\%	17-94 per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN MARCOS	760792	SNMCCAAO	SAN DIEGO	No	Over 20000 lines	70\%-80\%	0	Southern CA	0
SANTA MARGARITA	805390	SNMICA11	SAN LUIS OBISPO	No	1001-2999 Lines	50\%-60\%	0-16 per Sq. Mile	Bay / Central Coast	\$55,000-\$66,999
SAN MATEO	650071	SNMTCA11	SAN MATEO	Yes	Over 20000 lines	60\%-70\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN PEDRO	310659	SNPDCA01	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999
SONORA	209218	SNRACA13	tuolumne	No	10001-20000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
SAN RAFAEL MAIN	415072	SNRFCA01	MARIN	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
PARKWAY	415073	SNRFCA11	MARIN	Yes	10001-20000 Lines	60\%-70\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
SAN RAMON	925074	SNRMCA11	ALAMEDA	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
SANTA ROSA MAIN	707320	SNRSCA01	SONOMA	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
LOS ALAMOS	707319	SNRSCA11	SONOMA	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
SANTA CLARA SPACEPAF	408143	SNTCCA01	SANTA CLARA	Yes	10001-20000 Lines	50\%-60\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SANTA CLARA BELLOMY	408137	SNTCCA11	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
CARROL SUNNYVALE	408138	SNVACA01	SANTA CLARA	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Bay / Central Coast	\$88,000 +
MATHILDA SUNNEYVALE	408139	SNVACA11	SANTA CLARA	Yes	3000-10000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Bay / Central Coast	\$88,000 +
SAN YSIDRO	619794	SNYSCA12	SAN DIEGO	No	3000-10000 Lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$43,000-\$54,999
SONOMA	707323	SONMCA12	SONOMA	No	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
SOUT PASADENA MISSIOI	626660	SPSDCA11	LOS ANGELES	No	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	San Gabriel	\$88,000 +
SPRINGVILLE	559219	SPVLCA11	tulare	No	1001-2999 Lines	50\%-60\%	$0-16$ per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SIERRA CITY	530505	SRCYCA11	SIERRA	No	0-1000 Lines	<50\%	0	Northern CA / Central Valley	0
STRATFORD	559224	SRFRCA11	KINGS	No	$0-1000$ Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
SIERRAVILLE	530506	SRVLCA11	SIERRA	No	$0-1000$ Lines	50\%-60\%	0	Northern CA / Central Valley	0
SAUSALITO LARKSPUR	415075	SSLTCA11	MARIN	Yes	3000-10000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Northern CA / Central Valley	\$88,000 +


Table 4A.12: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)									
Wire Center Name	Wire Center	CLLI	County	Fiber	Wire Center Size Category	Pct Line Loss Category	Household Density Category	AT\&T Field Operations District	Median   Household Income Category
SOUTH TAHOE SUSSEX	530509	STAHCA01	EL DORADO	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
SOUTH TAHOE TAMARAC	530511	STAHCA12	EL DORADO	No	0-1000 Lines	70\%-80\%	0	Northern CA / Central Valley	0
SOUTH TAHOE MEYERS A	530512	STAHCA13	EL DORADO	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
STINSON BEACH	415076	STBHCA11	MARIN	No	1001-2999 Lines	<50\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
SUTTER CREEK	209225	STCKCA11	AMADOR	No	1001-2999 Lines	50\%-60\%	0	Northern CA / Central Valley	0
STONYFORD	530513	STFRCA11	COLUSA	No	0-1000 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
ST HELENA	707318	STHNCA11	NAPA	No	3000-10000 Lines	50\%-60\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
SUISUN CITY	707324	SUISCA11	SOLANO	Yes	1001-2999 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
SUNOL	925077	SUNLCA11	ALAMEDA	No	0-1000 Lines	50\%-60\%	0	Bay / Central Coast	0
TIBURON	415005	TBRNCA11	MARIN	No	3000-10000 Lines	60\%-70\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$88,000 +
TECHACHAPI	661395	THCHCA01	KERN	Yes	3000-10000 Lines	70\%-80\%	0-16 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
TAHOE CITY	530514	THCYCA01	PLACER	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
THREE RIVERS	559228	THRRCA11	TULARE	No	1001-2999 Lines	50\%-60\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
THORNTON	209227	THTNCA11	SAN JOAQUIN	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
TOMALES	707325	TMLSCA12	SONOMA	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
TEMPLETON	805396	TMTNCA11	SAN LUIS OBISPO	No	1001-2999 Lines	70\%-80\%	17-94 per Sq. Mile	Bay / Central Coast	\$67,000-\$87,999
TIPTON	559229	TPTNCA11	TULARE	No	0-1000 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
TRACY	209230	TRACCA11	SAN JOAQUIN	Yes	Over 20000 lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
TERRA BELLA	559226	TRBLCA11	TULARE	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
TURLOCK	209232	TRLCCA11	STANISLAUS	Yes	Over 20000 lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
TORRANCE	310661	TRNCCA11	LOS ANGELES	Yes	10001-20000 Lines	70\%-80\%	$1800+$ per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
TRINIDAD	707326	TRNDCA11	HUMBOLDT	No	1001-2999 Lines	70\%-80\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
TRES PINOS	831140	TRPSCA11	SAN BENITO	No	0-1000 Lines	<50\%	0	Bay / Central Coast	0
TRUCKEE	530515	TRUCCA11	NEVADA	No	10001-20000 Lines	70\%-80\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
NORTH STAR	530516	TRUCCA12	PLACER	No	1001-2999 Lines	50\%-60\%	0	Northern CA / Central Valley	0
TULARE	559231	TULRCA11	TULARE	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
TUSTIN 11	714798	TUSTCA11	ORANGE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$88,000 +
TUSTIN 70	714805	TUSTCA70	ORANGE	Yes	1001-2999 Lines	50\%-60\%	0	Southern CA	0
TWAIN HARTE	209233	TWHRCA11	TUOLUMNE	No	3000-10000 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
UKIAH MAIN	707328	UKIHCA01	MENDOCINO	No	10001-20000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
CAPELLA IVANHOE	707327	UKIHCA12	MENDOCINO	No	3000-10000 Lines	60\%-70\%	17-94 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
UNION CITY	510078	UNCYCA11	ALAMEDA	No	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Bay / Central Coast	\$88,000 +
UPPER LAKE	707329	UPLKCA11	LAKE	No	1001-2999 Lines	60\%-70\%	0-16 per Sq. Mile	Northern CA / Central Valley	\$0-\$42,999
VACAVILLE	707330	VCVLCA12	SOLANO	Yes	Over 20000 lines	70\%-80\%	95-449 per Sq. Mile	Northern CA / Central Valley	\$67,000-\$87,999
VINA	530517	VINACA12	TEHAMA	No	0-1000 Lines	50\%-60\%	0	Northern CA / Central Valley	0
VISALIA MAIN	559235	VISLCA11	TULARE	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$43,000-\$54,999
VISTA	760800	VISTCA12	SAN DIEGO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Southern CA	\$55,000-\$66,999
VALLEY CENTER	760799	VLCTCA11	SAN DIEGO	No	3000-10000 Lines	70\%-80\%	17-94 per Sq. Mile	Southern CA	\$67,000-\$87,999
VALLEJO	707331	VLLJCA01	SOLANO	Yes	Over 20000 lines	70\%-80\%	450-1799 per Sq. Mile	Northern CA / Central Valley	\$55,000-\$66,999
VAN NUYS	818662	VNNYCA02	LOS ANGELES	Yes	Over 20000 lines	70\%-80\%	1800 + per Sq. Mile	Greater LA / Bakersfield	\$43,000-\$54,999
VENTURA FIR	805400	VNTRCA02	VENTURA	Yes	10001-20000 Lines	70\%-80\%	95-449 per Sq. Mile	Greater LA / Bakersfield	\$55,000-\$66,999
VENTURA MAIN MONTALV	805399	VNTRCA11	VENTURA	Yes	10001-20000 Lines	70\%-80\%	450-1799 per Sq. Mile	Greater LA / Bakersfield	\$67,000-\$87,999

For Phase 2, ETI has updated each of the four (4) graphs for each of the five category dimensions that correspond to AT\&T Companywide graphs provided above. These have now been updated to include data for 2018-2019. As with the companywide service quality metric graphs discussed above, we have calculated three separate trend lines for each graph - covering the periods 2010-2019 (solid red line); 2010-2017 (dashed green line); and 2018-2019 (dashed purple line). Two separate charts are provided for each graph. The first, or "A" chart, provides category trend lines for the full 2010-2019 period. The second, or "B" chart, provides trend lines for the 2010-2017 period and for the 2018-2019 period. Table 4A. 13 below provides an index to the figures for each set of attributes.

Table 4A.13							
SUMMARY OF AT\&T ATTRIBUTE DIMENSION GRAPHS							

As we discuss in the remainder of this Chapter, these wire center category analyses have generally retained the same overall relationships among the individual categories that we had identified in Phase 1. Performance across most service quality metrics is better in wire centers that have been upgraded with fiber optic distribution facilities, in wire centers serving relatively high-density urban and suburban communities, in larger wire centers, and in wire centers that have experienced the largest losses of customers to competitors. However, in almost every instance and category of wire center serving area, performance across most service quality metrics has significantly deteriorated over the 2018-2019 period relative to where it had been during the Phase 1 2010-2017 time frame.

Performance across most service quality metrics is better in wire centers that have been upgraded with fiber optic distribution facilities, in those serving higher-density urban and suburban communities, in larger wire centers, and in those with the largest losses of customers to competitors. But in almost every category, performance has significantly deteriorated over the 2018-2019 period.

Fiber optic upgraded wire centers offering broadband services availability.
Although this study and GO 133-C/D are primarily focused upon traditional circuit-switched POTS services, ETI hypothesized that the availability of fiber optic feeder and/or distribution (FTTN or FTTP) facilities capable of supporting broadband services in a particular wire center
indicates that AT\&T has undertaken to invest in and to upgrade the central office and outside plant facilities therein. To test the hypothesis. we compared service quality metrics in upgraded vs. non-upgraded wire centers to see if performance was better where upgrades had occurred and, in general, our expectations had been borne out.

As of 2017, approximately half (338) out of the 612 AT\&T California wire centers had been upgraded with the capability to support high-speed broadband services. ${ }^{16}$ That number has remained unchanged since that date. ${ }^{17}$ The only one of these services that falls within the scope of this study is VoIP; broadband Internet access and video do not. Using fiber availability as a surrogate for specific data on capital investment in each wire center, we examined whether the presence of one or more broadband offerings in any given wire center had a beneficial impact upon POTS service quality being furnished out of that same building - specifically, on the incidence of out-of-service situations, their duration, and the extent to which the $90 \%$ cleared within 24 hours standard had been achieved.

In general, and as illustrated on updated Figures 4A. 13 through 4A.16, wire centers that had been upgraded with fiber performed noticeably better on all OOS metrics than those for which no broadband investment had been made. In non-fiber upgraded wire centers, the long-term trend of monthly out-of-service incidents per 100 POTS lines in service mushroomed from 1.32 in the first quarter of 2010 to 1.86 as of the fourth quarter of 2017. For the 2018-2019 Phase 2 study period, however, service quality performance deteriorated in both fiber- and non-fiber wire cneters, although those that had been upgraded continued to perform significantly better.

> Wire centers upgraded with fiber to support broadband achieve better service quality performance scores in every category - but in 2018-2019, service quality in both types of wire centers was decidedly inferior to what had been achieved during the Phase $12010-2017$ period. AT\&T needed only 1.15 days to clear $90 \%$ of service outages in upgraded wire centers as of the end of 2019; for non-upgraded wire centers, it took 2.43 days to clear $90 \%$. The corresponding Phase 1 (4Q2017) were 1.10 and 1.86 .

As of December 31, 2020, AT\&T California had not upgraded any additional wire centers for Broadband since at least May 11, 2018.

In 2018-2019, service quality in both Broadband-enabled and nonBroadband wire centers was decidedly inferior to what had been achieved during the Phase 1 2010-2017 period.

[^7]

Figure 4A.13. Wire centers that had not been upgraded with fiber optic facilities experienced further degradation in the number of out-of-service incidents per 100 access lines (actual) in 2018-2019.


Figure 4A.14. The average duration for OOS over 24 hours (actual) in wire centers that had not been upgraded with fiber optic facilities grew even longer in 2018-2019.


Figure 4A.15. The percentage of all OOS cleared within 24 hours (actual) dropped considerably both in fiber and non-fiber wire centers in 2018-2019.


Figure 4A.16. It took AT\&T California more days to clear $90 \%$ of outages (actual) both in fiber and non-fiber wire centers in 2018-2019.

## Wire center size

GO 133-C/D refers to three sizes of ILEC wire centers. Small (1000 or fewer POTS lines), Medium (1001-2999 lines), and Large (3000 or more lines). ${ }^{18}$ As shown in Table 4A. 1 above, 413 out of the total 612 AT\&T wire centers would fall in the "Large" category ( 3000 or more POTS lines in service). The large drop-off in AT\&T POTS access line demand over the 20102019 period would require the reclassification of individual wire centers as category thresholds were crossed. However, given that these individual wire centers were configured for the number of POTS lines in service pre-dating January 2010, the size categorization extant as of the beginning of the Phase 1 study period was retained throughout the 10 -year time frame. ${ }^{19}$ Additionally, for analytical purposes, ETI determined that it would be useful to split the "Large" category into several more granular classifications, as we have done on Table 4A.14.

Table 4A. 14		
AT\&T CALIFORNIA		
CLASSIFICATIONS OF WIRE CENTERS BY POTS LINES IN SERVICE AS OF JANUARY 2010		
POTS Lines range	Category	No. of WCs
1,000 or fewer	Small	90
1,001-2,999	Medium	108
3,000-9,999	Large Metro	141
10,000-19,999	Large Urban	105
20,000 and above	Very Large	168
TOTAL		612

There appears to be a strong relationship between the overall size of a wire center (in terms of the number of POTS lines in service as of January 2010) and the quality of service that is being
18. GO $133-\mathrm{C} / \mathrm{D}$, at §3.3(c).
19. Indeed, GO 133-C/D's reliance upon current wire center size for purposes of determining the applicable TRPH performance standard - 10, 8 or 6 for Small, Medium size, or Large, respectively, seems misplaced, in that it operates to apply successively more lenient performance standards as access line losses increase. For example, a wire center that had 3,100 POTS lines in service in 2010 would then have been required to satisfy a 6.0 TRPH standard. Once that access line count dropped below 3,000 , the allowable TRPH level would have automatically increased to 8.0 and if, by the end of the study period, the wire center's access line count had dropped below 1,000 , the allowable TRPH level would have increased further, to 10.0 . ETI sees no obvious reason why a decrease in the number of POTS lines in service in a given wire center should justify a more lenient service quality performance standard. Indeed, if anything, the very competitive marketplace forces that had been assumed to exist as a basis for adoption of the URF should have precisely the opposite effect - confronted with persistent and growing line losses, the ILEC's incentive should be to improve service quality so as to discourage further losses, rather than simply allow conditions to deteriorate further.
provided. Figure 4A. 17 highlights this relationship. While there has been an increase in the number of out-of-service conditions per 100 POTS lines in all wire center size categories, both the number and the rate of increase in OOS per 100 POTS lines have been lowest in the very largest (over 20,000 lines) wire centers, and highest in the under 1,000 line wire center category. A similar relationship is observed with respect to out-of-service duration. As shown on Figure 4A.18, while durations have been rising across all size categories, the highest rate of increase and the longest durations prior to restorations - are occurring in the smallest wire centers. The largest wire centers also exhibit the highest percentage of all outages cleared within 24 hours (actual) (Figure 4A.19) and the fewest number of days to clear $90 \%$ of all out-of-service incidents (actual) (Figure 4A.20).

The differences in these outcomes based upon wire center size are striking. In the fourth quarter of 2017, AT\&T was able to clear $57 \%$ of outages within 24 hours, and had actually improved that clearance rate from $51 \%$ in 1Q2010. But in the smallest wire center category, the 4Q2017 trend value clearance rate was $36 \%$, actually down from the $38 \%$ trend value in 1Q2010. A corresponding size/service quality relationship is also evident with respect to the days required to clear $90 \%$. That time frame increased in all five size categories, but the rate of increase - and the number of days to reach $90 \%$ - were lowest in the over-20,000 line category and highest in the under- 1,000 line category.

After 2017, the ordinal relationships among the five wire center size categories generally persisted, although almost all of the size categories saw deteriorating results after 2017.

> The strong relationship between the number of POTS lines in a wire center and the quality of service provided has persisted into the $2018-2019$ period, with the number and the rate of increase in OOS per 100 POTS lines continuing to be lowest in the very largest (over 20,000 lines) wire centers. However, service quality has deteriorated in all line-size categories since 2017 .


Figure 4A.17. The largest wire centers generally experienced the lowest out-of-service rate per 100 lines in service (actual), but the outage rate increased for all wire center size categories in 2018-2019.


Figure 4A.18. The largest wire centers generally exhibited the shortest average duration of OOS over 24 hours (actual); the two largest size categories saw some improvement in 2018-2019, while the two smallest size categories experienced even longer durations than in the Phase 1 study period.


Figure 4A.19. The largest wire centers generally exhibited the highest percentage of all OOS cleared within 24 hours (actual), but all five size categories saw significant decreases in this metric in 2018-2019.


Figure 4A.20. The largest wire centers generally required the fewest number of days to clear $90 \%$ of all out-of-service incidents (actual), but the days-to-clear metric increased across all size categories in 2018-2019.

## Access Line Loss.

Figure 4A. 21 highlights the precipitous drop in AT\&T California POTS lines in service over the full 2010-2019 study period. Companywide, AT\&T California experienced a net loss of $79.1 \%$ of its POTS access lines, going from 8,035,134 in January 2010 to only 1,679,543 as of December 2019. These POTS losses were offset to some extent by the growth in interconnected VoIP access lines, as shown in Figure 4.4 above for all wireline carriers statewide and in Table 14.1 (in Chapter 14) for AT\&T California specifically. We don't have carrier-specific residential and business losses, but FCC state-level data covering all wireline carriers (summarized on Figures 4.2 and 4.3 above) confirms that, as a general matter, residential wireline (POTS) losses were far greater than business losses as increasing numbers of households migrated to non-ILEC providers (primarily to cable MSOs offering interconnected VoIP-based telephone services) and to wireless. ${ }^{20}$

However, the actual extent of AT\&T POTS line losses varied widely among individual wire centers, from a gain of $18.75 \%$ in the Modesto 13th Street wire center to a loss of $96.56 \%$ in Paradise Main. In light of these large variations, we wanted to examine the potential impact that POTS line losses might have upon the overall service quality in each wire center. Large POTS line losses would likely result in a reduction of maintenance personnel, which could in turn have an adverse impact upon the Company's ability to respond to OOS situations. Alternatively, a large drop in the number of working lines could have the effect of making additional spare capacity available for rapid deployment as replacements for defective loops, switch ports or other service components. On the other hand, persistent and increasing service quality problems could work to stimulate even more demand shifts away from the ILEC and over to an alternative service provider. We have grouped the AT\&T wire centers into five (5) POTS Line Loss categories, as shown on Table 4A. 15 below:

[^8]

Table 4A.15	
AT\&T CALIFORNIA	
CLASSIFICATIONS OF WIRE CENTERS BY	
POTS LINE LOSS PERCENTAGE	
JANUARY 2010 THROUGH DECEMBER 2019	
POTS Lines Loss range	No. of WCs
Less than 50\%	25
$50 \%-60 \%$	32
$60 \%-70 \%$	67
$70 \%-80 \%$	248
$80 \%$ and above	240
TOTAL	612



Figure 4A.21. Companywide, AT\&T California experienced a net loss of 78.6\% of its POTS access lines in service over the 2010-2019 period.

In Phase 1, we observed that those wire centers that had experienced the lowest rate of POTS line losses - less than $50 \%$ over the study period - experienced the largest increases in the rate of outages per 100 POTS lines; for wire centers with successively larger line loss percentages, increases in OOS per 100 POTS lines were much smaller - as too were the numbers of outages per 100 POTS lines - with the group exhibiting the second largest POTS line losses $-70 \%$ to $80 \%$ - remaining almost constant over the study period (Figure 4A.22). For average duration of OOS over 24 hours, the outcome was directly inverse to line loss percentage. Here, the wire centers experiencing POTS line losses in excess of $80 \%$ show virtually no change in average duration - going from 3,604 minutes ( 2.50 days) in 1Q2010 to 5,297 minutes ( 3.67 days) in 4Q2019. For wire centers experiencing the smallest rate of line loss (less than $50 \%$ ), durations of outages over 24 hours jumped by $89 \%$, from 3,672 minutes ( 2.55 days) in 1Q2010 to 7,810 minutes ( 5.42 days) in 4Q2019 (Figure 4A.23). Similar patterns were found for the percentage of outages restored within 24 hours and for the number of days required to reach the $90 \%$ cleared objective. The wire centers experiencing the highest loss of POTS lines performed best on both of these metrics, whereas those with the smallest losses suffered the greatest degradation in service quality (Figure 4A. 24 and 4A.25).

For the most part, these relationships persisted into 2018-2019, although service quality performance was poorer on most of the metrics that we examined. One notable exception was a particularly large spike in out-of-service durations in the very largest wire centers over the 20182019 period relative to the earlier trend (Figure 4A.23).

ECONOMICS AND


Figure 4A.22. AT\&T California wire centers with the fewest POTS line losses have experienced the greatest increase in OOS per 100 lines in service (actual), a disparity that became even greater in 2018-2019.


Figure 4A.23. AT\&T California wire centers with the largest POTS line losses had been experiencing the shortest average durations of OOS over 24 hours (actual) in the Phase 1 study period, but durations in this category saw a huge spike in the 2018-2019 period.


Figure 4A.24. AT\&T California wire centers with the largest POTS line losses are experiencing the highest percentages of all OOS cleared within 24 hours (actual), but this metric worsened for all except the smallest line loss category in 2018-2019.


Figure 4A.25. AT\&T California wire centers with the largest POTS lines losses requires the fewest number of days to clear $90 \%$ of all OOS (actual), but days-to-clear-90\% increased for all line loss categories in 2018-2019.


#### Abstract

Wire centers that had experienced the lowest rate of POTS line losses less than $50 \%$ over the study period - saw the largest increase in service outages; for those with successively larger line loss percentages, the incidence of service outages increased more slowly or remained almost constant over the study period. But performance in nearly all of the service quality metrics we studied deteriorated after 2017.


## Urban/Suburban/Rural

In support of our work on Phase $1, \mathrm{CD} / \mathrm{GIS}$ had provided us with a mapping of the roughly 500,000 Census Blocks in AT\&T California's operating areas to the AT\&T wire center serving that Census Block. Included in this dataset were the 2017 population, number of households, and median household income for each Census Block. The Census Bureau does not provide Census Block-level area data, but does provide land area in square miles for each Census Tract. Census Tracts are small, relatively permanent statistical subdivisions of a county, with populations that range between 1,200 and 8,000 , with an average of about $4,000 .{ }^{21}$ We aggregated the individual Census Block data to the Census Tract level within each AT\&T wire center serving area. Where a Census Tract was served by more than a single wire center, we assigned it to the wire center that served the majority of the Census Tract. Finally, we aggregated all Census Tracts within each wire center serving area to obtain land area and population for that wire center.

We were then able to calculate the population density for each wire center serving area by dividing its total land area by the number of households. Because wireline telephone service is typically furnished to a household rather than to an individual, we used total households rather than total population for this purpose. Wire centers were then assigned to one of five quintiles in terms of their density - the lowest $20 \%$ were assigned to Density Group 1, the next $20 \%$ to Density Group 2, and so on.

Over the Phase 1 study period, AT\&T's responses to out-of-service conditions had generally deteriorated, except in areas with the highest population density (in terms of households per square mile). The incidence of out-of-service per 100 lines in service (actual) has been increasing except in the highest density wire centers. The average duration of those out-ofservice conditions that remain uncleared for more than 24 hours (actual) has increased in all areas, but with the largest increases occurring in areas with the lowest population densities. The percentage of all out-of-service conditions that are being cleared within 24 hours, for which GO $133-\mathrm{C} / \mathrm{D}$ has established a $90 \%$ objective, remains lowest in areas with the lowest population densities, and does not appear to have improved, except in the highest density wire centers, where the trend line values improved from about $50 \%$ in 2010 to $58 \%$ in 2017. Finally, the

[^9]number of days required for AT\&T California to achieve the $90 \%$ OOS cleared objective has gotten longer, except in the highest density areas.

For the 2018-2019 period, we observed little change in the relationships among the five density categories. However, overall performance was considerably poorer in all five categories and for all four of the metrics we studied. These results are plotted on Figures 4A.26, 4A.27, 4A. 28 and 4A. 29 below:

> Except in areas with the highest population density, AT\&T's response to out-of-service conditions has generally deteriorated over the study period. That deterioration appears to have accelerated for all population density categories in the 2018-2019 period.


Figure 4A.26. AT\&T California OOS per 100 lines in service (actual) had been increasing except in the highest density categories, and escalated further in all but one density category in 2018-2019.


Figure 4A.27. AT\&T California average duration of OOS over 24 hours (actual) had increased the most in areas with the lowest population density, and saw further increases in 2018-2019 across all density categories.


Figure 4A.28. AT\&T California percent of all OOS cleared within 24 hours (actual) had remained stable except in areas with the highest population density, but saw decreases in all five density categories in 2018-2019.


Figure 4A.29. The number of days required for AT\&T California. to clear $90 \%$ of all OOS (actual) has increased in all five density categories over the entire 2010-2019 period.

## ILEC Organizational Assignment

AT\&T California's principal network maintenance organization had been known as "Technical Field Services (TFS) West (Core)" although it was sometimes referred to as Technology Field Services. In its May 15, 2020 response to CD Network Exam Phase 2 Data Request 11-A-1, AT\&T California advised that " $[i] n$ October 2019 the name of the Technology Field Services West (TFS) organization was changed to AT\&T Field Operations (AFO) West." ${ }^{22}$ We shall henceforth utilize that revised designation. According to AT\&T, AFO "is responsible for the installation and repair of Legacy and IP voice and broadband data services (from central offices, through outside cable plant, terminals, and to the customer premises), as well as network infrastructure support and maintenance of those same central office and outside cable plant network facilities. ${ }^{n 3}$ AT\&T has established five (5) regional AFO maintenance organizations, which we refer to as AFO Districts - Greater LA/Bakersfield; San Gabriel; Bay Area/Central Coast; Northern California/Central Valley, and Southern California. Of the five AFO Districts, the Los Angeles/Bakersfield and San Gabriel districts - both of which serve wire centers in the greater Los Angeles metropolitan area - were showing significant improvements in most OOS metrics - decreasing numbers of OOS per 100 POTS lines in service, shorter out-of-service durations until cleared, higher percentages of OOS cleared within 24 hours, and fewer days required to reach the $90 \%$ cleared level - over the Phase 1 2010-2017 study period. However, even those gains were largely reversed in 2018-2019, when performance by all AFO Districts in most service quality metrics suffered. The poorest performing AFO District continue to be the one serving Northern California. These results are plotted on Figures 4A.30, 4A.31, 4A. 32 and 4A. 33 below:


The stark differences in performance among the five AFO Districts may well be explained by the relative amount of broadband investment that AT\&T had made in each of these areas. Table 4A. 16 below summarizes, for each AFO District, the total number of wire centers for which the District is responsible together with the number of those wire centers that have been upgraded for broadband services as of the end of 2017. As noted above, AT\&T has confirmed that no additional wire centers have been upgraded for broadband since that date.

[^10]23. AT\&T California response to DR-01A, Request 1.

AT\&T FIELD OPE TOTAL WIRE CEN UPGRADED WITH FIBER TO AS OF	le 4A   CALIF   ATION   RS A   SUPPO   CEMB	IA   FO) DISTR WIRE CEN BROADBA 2019	S   S   SERVICES
AFO District	Total WCs	Upgraded WCs	Percent Upgraded
Bay / Central Coast	126	85	67.5\%
Greater LA / Bakersfield	85	64	75.3\%
Northern CA / Central Valley	286	95	33.2\%
San Gabriel	13	12	92.3\%
Southern California	105	81	77.1\%
TOTAL	615	337	54.8\%

It seems hardly surprising that the AFO District with the poorest overall performance on all of the relevant service quality metrics - Northern CA / Central Valley - also has the lowest percentage of upgraded wire centers (33.2\%) and, conversely, the AFO District exhibiting the best performance and improvement overall - San Gabriel - also happens to have the highest percentage of upgraded wire centers ( $92.3 \%$ ). However, while investment in wire center upgrades may well account for a net gain in service quality overall (as in the case of the Los Angeles and San Gabriel AFO Districts), it would not by itself explain why those AFO Districts with the smallest percentage of wire center upgrades have experienced so substantial a degradation in service quality over the period, except perhaps to underscore the pressing need for investment and upgrades in these other wire centers as well.


Figure 4A.30. AT\&T California. OOS per 100 lines in service (actual) varied inversely with the type of area being supported by each AFO district - lowest in the largest metro areas, but saw large increases in the San Gabriel and Southern California districts.


Figure 4A.31. The average duration of OOS over 24 hours (actual) is longest and had been increasing - in AT\&T California AFO districts covering non-metro and rural areas, and also saw large increases in the San Gabriel and Southern California districts.


Figure 4A.32. The percentages of OOS to be cleared within 24 hours (actual) decreased in all five AFO districts in 2018-2019.


Figure 4A.33. The number of days required to clear $90 \%$ of all OOS (actual) increased in all five AFO districts in 2018-2019.

Since the bulk of AT\&T's investments in its ILEC network have been aimed at upgrades that support broadband services, the AFO Districts with the smallest percentage of such upgrades have continued to experience substantial degradations in service quality into the 2018-2019 period. This result further underscores the pressing need for infrastructure investment irrespective of AT\&T's pursuit of the broadband market.

## Summary

Overall, ETI's analysis of the 5.6-million AT\&T out-of-service Trouble Report records and other pertinent AT\&T service quality data over the full 10-year 2010-2019 period indicates that the company's service quality and its response to protracted out-of-service conditions has declined, in some cases significantly, over this time frame. Of particular concern, the degradation in AT\&T service quality overall appears to have accelerated in 2018-2019. There were few exceptions within the overall AT\&T California network.

Wire Centers that have received broadband upgrades - and hence benefitted from an infusion of new investment - have fared a lot better than those locations where little or no such upgrades had taken place. Service quality and responses to outages in the very largest wire centers particularly those in the Los Angeles area (the Los Angeles and San Gabriel AFO Districts) actually showed some improvements, whereas other AFO Districts exhibited deteriorating service quality conditions. In terms of absolute numbers, AT\&T out-of-service incidents declined, but the decline was less than in proportion to the large decrease in the number of POTS lines in service that AT\&T has experienced over the 10 -year study period. The various intercategory relationships were largely maintained in the last two years, but most metrics saw significant losses in all categories in 2018-2019.

## 4F SERVICE QUALITY ANALYSIS UPDATE: FRONTIER CALIFORNIA

## Principal observations and takeaways:

- The greatest demand drop-offs for legacy POTS services generally occurred in the largest of Frontier's reporting units.
- Over the 2016-2019 Frontier ownership period, POTS access lines in service experienced a $52.3 \%$ decrease, dropping from $1,201,218$ to 572,975 . Thus, in less than four years after taking over the ILEC, more than half of Frontier California's POTS customers had discontinued their service.
- Over the period of Frontier ownership, the relative drop-off in legacy POTS access lines greatly exceeded the relative decrease in total out-of-service incidents; thus, under Frontier ownership, out-of-service incidents per 100 access lines in service increased.
- Improvements in service quality that were accomplished during the first seven quarters following Frontier's takeover were reversed in 2018-2019, which saw increases in the numbers of service outages lasting more than 24 hours and in the average duration of all service outages.
- $57.85 \%$ of the roughly 112,022 out-of-service conditions ( $34.84 \%$ on an "adjusted" basis) remained uncleared after 24 hours by Frontier during the 2018-2019 Phase 2 period. For the 118,402 out-of-service conditions during the 4/2016-12/2017 Phase 1 period, 53.83\% ( $47.01 \%$ on an adjusted basis) remained uncleared after 24 hours. To satisfy the GO $133-\mathrm{C} / \mathrm{D} \S 3.4$ (c) requirement, these percentages would need to drop to less than $10 \%$.
- Wire centers upgraded with Fiber-to-the-Premises ("FTTP") capable of providing FiOS broadband services achieve better service quality performance scores in virtually every category than those without such upgrades. But Frontier lost ground in all of these metrics both in upgraded and non-upgraded wire centers over the 2018-2019 period.
- The strong relationship between the number of POTS lines in a wire center and the quality of service provided that we had identified in Phase 1 has generally persisted into Phase 2.


## Principal observations and takeaways (continued):

- The largest increases in service outages occurred in wire centers with the lowest POTS drop-off rates; the incidence of service outages increased more slowly or remained almost constant in wire centers with successively larger drop-off rates.
- Frontier service quality metrics continue to show the best results in higher-density serving areas.
- Except in those areas with the lowest population density, Frontier's response to out-of-service conditions had generally improved over the period immediately following its takeover. However, by 2018, these gains had started to reverse.
- Service quality metrics in all six Frontier Operating Areas generally improved from the April 2016 acquisition date through the end of 2017, but this pattern reversed course starting in 2018.
- The Operating Areas with the largest presence of fiber upgrades continue to exhibit the lowest number of OOS incidents and the shortest outage durations for those that do occur over the full 2016-2019 period.
- The trend in average duration of all out-of-service conditions, excluding those cleared within one hour, has been steadily increasing over the 2016-2019 Frontier ownership period.
- The largest increases in service outages continued to occur in wire centers with the lowest POTS drop-off rates.
- The Operating Areas within which most of the Verizon and Frontier FTTP upgrades have occurred have experienced the lowest number of OOS incidents and the shortest outage durations for those that do occur.


## SERVICE QUALITY ANALYSIS UPDATE: <br> FRONTIER CALIFORNIA

## TABLE OF CONTENTS

Introduction ..... 195
Frontier has been hemorrhaging customers almost from the date of the acquisition ..... 195
Trouble Reports and POTS Lines in Service - a more granular perspective ..... 199
Frontier Service Quality Performance: 2018-2019 Update ..... 208
Effect of persistent access line losses on the volume of customer trouble reports ..... 208
Out-of-service conditions ..... 210
Duration of out-of-service conditions ..... 210
Out-of-service conditions cleared within 24 hours ..... 214
Regression analyses covering all Frontier wire centers over time using a "Fixed Effects Panel Model." ..... 227
Effects of geographic and other wire center attributes upon performance results ..... 236
Wire Centers that had been upgraded to FTTP ..... 242
Wire Center Size ..... 249
Access Line Loss ..... 254
Urban/Suburban/Rural ..... 260
ILEC Organizational Assignment. ..... 265
Summary ..... 271

## Tables and Figures

Table 4F.1: Frontier California Drop-Off In POTS Demand At Wire Centers Of Varying Sizes April 2016 - December 2019.

Table 4F.2: Frontier California Percent Out-of-Service Over 24 Hours Durations Per 100 POTS Lines in Service -- 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017.

Table 4F.3: Frontier California Average Out-of-Service Duration -- 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017.

Table 4F.4: Frontier California Percent Out-of-Service Cleared Within 24 Hours -- 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017. 202

Table 4F.5: Frontier California Days Required to Clear 90\% of Out-of-Service Conditions - 20 Poorest Performing and 10 Best Performing Wire Centers 2Q2016-4Q2017.

Table 4F.6: Frontier California Trouble Report Out-of-Service Data for 2Q20164Q2017.

204
$\begin{array}{lll}\text { Table 4F.7: } & \begin{array}{l}\text { Percentages Of Actual And Adjusted ("CPUC") Out-of-Service Conditions } \\ \\ \\ \text { Cleared Within } 24 \text { Hours And Days Required To Clear 90\%. }\end{array} & 214\end{array}$
Table 4F.8(a): Frontier California Reporting Unit Performance Trends for the period 2Q2016-4Q2019.

Table 4F.8(b): Frontier California Reporting Unit Performance Trends for the period
2Q2018-4Q2019.

Table 4F.9: Frontier California Fixed Effects Regression Results: Dependent Variable
Percent Cleared within 24 hours (Actual)

Table 4F.10: Frontier California Fixed Effects Regression Results: Dependent
Variable - Days Required to Clear 90\% (Actual)

Table 4F.11: Frontier California Fixed Effects Regression Results: Dependent Variable
Out of Service per 100 Access Lines-Monthly

Table 4F.12: Frontier California Fixed Effects Regression Results:Dependent Variable -Average Out-of-Service Duration

Table 4F.13: Frontier California Wire Center Attribute Dimensions and Categories. 237
Table 4F.14: Frontier California Wire Center Attribute Classifications ..... 238
Table 4F.15: Summary of Frontier Attribute Dimensions Graphs ..... 242
Table 4F.16: Frontier California Classifications of Wire Centers and Reporting UnitsWith and Without FTTP Upgrades as of April 2016 ..... 243
Table 4F.17: Frontier California Classifications of Wire Centers and Reporting Units by POTS Lines in Service. ..... 249
Table 4F.18: Frontier California Classifications of Wire Centers by POTS Line Loss Percentage. ..... 254
Table 4F.19: Frontier California Operating Areas ..... 265
Figure 4F.1: Frontier California has lost more than half of its POTS Access Lines in Service since taking over the company in 2016.198
Figure 4F.2: The number of Out-Of-Service incidents has fallen by a smaller percentage than the drop-off in POTS access lines over the 2016-2019 period of Frontier ownership.209
Figure 4F.3: There has been a steady upward trend in the number of out-of-service incidents per 100 access lines in service under Frontier ownership, and a further increase over the 2018-2019 Phase 2 study period.209
Figure 4F.4: The number of out-of-service incidents exceeding 24 hours per 100 access lines was initially decreasing under Frontier ownership, but has now been on the rise over the 2018-2019 period.
Figure 4F.5: The average duration (actual) of all out-of-service conditions had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.
Figure 4F.6: The average duration (actual) of out-of-service conditions greater than one hour had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.
Figure 4F.7: Average actual (actual) duration of all out-of-service incidents in excess of 24 hours in duration has been trending upward over the 2018-2019 period.
Figure 4F.8: Average duration of all out-of-service incidents adjusted for Sundays and holidays had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.

Figure 4F.9: Average duration of all out-of-service incidents in excess of 24 hours adjusted for Sundays and holidays has been trending upward over the 2018-2019 period.

Figure 4F.10: Percentage of all out-of-service conditions cleared within the first 24 hours (actual) had been improving during the first two years of Frontier ownership, but that trend has sharply decreased over the 2018-2019 period.

Figure 4F.11: Percentage of all out-of-service conditions cleared within the first 24 hours (adjusted for Sundays and holidays) had been improving during the first two years of Frontier ownership, but that trend has sharply decreased over the 2018-2019 period.

Figure 4F.12: Days required to clear $90 \%$ of all out-of-service conditions (actual) had been dropping during the first two years of Frontier ownership, but that trend has been getting longer over the 2018-2019 period.

Figure 4F.13: Days required to clear $90 \%$ of all out-of-service conditions (adjusted for Sundays and holidays) had been dropping during the first two years of Frontier ownership, but that trend has been getting longer over the 2018-2019 period.

Figure 4F.3P: Panel Model Box Diagram: Out-of-Service per 100 Access Lines - Monthly 232
Figure 4F.5P: Panel Model Box Diagram: Average Out-of-Service Duration (Actual) 233
Figure 4F.10P: Panel Model Box Diagram: Percent Out-of-Service Cleared Within 24 Hours (Actual)

Figure 4F.12P: Panel Model Box Diagram: Days Requires to Clear 90\% of Out-of-Service Conditions (Actual)

Figure 4F.14: There have been fewer out-of-service conditions per 100 access lines in wire centers with FTTP upgrades, but both categories have seen increases in OOS rates over the 2018-2019 period.

Figure 4F.15: Service outages are shorter in wire centers that have received FTTP upgrades, but following some improvement in FTTP offices following Frontier's takeover, durations have been on the rise in both categories over the 2018-2019 period.

Figure 4F.16: FTTP-upgraded wire centers clear a higher percentage of out-of-service conditions within 24 hours, but following improvement in both categories
following Frontier's takeover, the percent cleared within 24 hours has been falling in both categories over the 2018-2019 period.

Figure 4F.17: The number of days needed to clear $90 \%$ of service outages in shorter in FTTP-upgraded wire centers, but following improvement in both categories following Frontier's takeover, the days needed to clear $90 \%$ has been increasing in both categories over the 2018-2019 period.

Figure 4F.18: The largest wire centers exhibit the fewest number of out-of-service conditions per 100 access lines, but wire centers in all size categories have seen increases in OOS rates over the 2018-2019 period.

Figure 4F.19: Service outages continued to have shorter durations in larger wire centers following Frontier's takeover, but wire centers in all size categories have taken longer to clear over the 2018-2019 period.

Figure 4F.20: The largest wire centers tended to clear a higher percentage of out-ofservice conditions within 24 hours, but following improvement in all size categories following Frontier's takeover, the percent cleared within 24 hours has been falling in all size categories over the 2018-2019 period.

Figure 4F.21: The number of days needed to clear $90 \%$ of service outages is shortest in the largest wire centers and had been improving in all but the two smallest size categories following the Frontier takeover, but has been increasing in all size categories over the 2018-2019 period.

Figure 4F.22: Wire centers that had experienced the greatest drop-off in demand for POTS services generally exhibited the fewest number of out-of-service conditions per 100 access lines, but that number has been increasing in all line loss categories over the 2018-2019 period.

Figure 4F.23: Service outages tended to be shortest in wire centers that had experienced the greatest drop-off in demand for POTS, but durations have been on the rise in all line loss categories over the 2018-2019 period.

Figure 4F.24: Access line drop-off rates appear to have had little effect upon the percentage of out-of-service conditions within 24 hours, but after gains in all five categories following Frontier's takeover in 2016, significant degradation in this metric has occurred in all loss categories over the 2018-2019 period.

Figure 4F.25: Access line drop-off rates appear to have had little effect upon the number of days needed to clear $90 \%$ of service outages, but after gains in all five categories following Frontier's takeover in 2016, significant degradation in this metric has occurred in all loss categories over the 2018-2019 period.

Figure 4F.26: Wire centers serving areas with the highest population density exhibit the fewest number of out-of-service conditions per 100 access lines under Frontier management, but wire centers in all density categories have seen increases in OOS rates over the 2018-2019 period.

Figure 4F.27: Service outages tend to be shortest in wire centers serving the more densely populated areas, but wire centers in all density categories have seen increases in OOS duration over the 2018-2019 period.

Figure 4F.28: Wire centers serving the more densely populated areas tended to clear a higher percentage of out-of-service conditions within 24 hours, but wire centers n all density categories have seen reductions in this metric over the 2018-2019 period.

Figure 4F.29: The number of days needed to clear $90 \%$ of service outages is shortest for wire centers serving more densely populated areas, but wire centers in all density categories have seen increases in days-to-clear over the 2018-2019 period.

Figure 4F.30: Frontier's Desert and Northern Operating Areas, which have responsibility for wire centers serving the least densely populated areas, exhibit the highest number of out-of-service conditions per 100 access lines.

Figure 4F.31: Service outages tend to be shorter in those Operating Areas serving more densely populated areas.

Figure 4F.32: Operating Areas serving the more densely populated areas have the best record of clearing a high percentage of out-of-service conditions within 24 hours, but these clearance rates experienced significant increases in all six Operating Areas in 2018-2019.

Figure 4F.33: The number of days needed to clear $90 \%$ of service outages had been improving in all except the Desert Operating Area following the Frontier takeover, but in 2018-2019 all Operating Areas saw significant escalations in outage durations.

## A NOTE ABOUT FRONTIER WIRE CENTER DATA

In total, Frontier California, and Verizon California before it, operate approximately 270 wire centers. Under Verizon ownership, the company had been reporting trouble ticket and out-ofservice data separately for each of these 270 wire centers. However, for some unexplained reason, following its takeover, Frontier has administratively - but not physically - implemented a succession of consolidations of a number of these individual wire centers for reporting purposes, ultimately into approximately 198 combined "reporting units." ETI believes that Frontier's unexplained restructuring of its wire center data undermines the Commission's clear intent, in adopting the variouis GO 133 reporting requirements, to obtain and track service quality at the individual wire center level. By merging two or more separate wire centers into a single unit for reporting purposes, Frontier effectively conceals its service quality metrics for each of the individual wire centers within the consolidated group. As a consequence, the Commission can no longer track GO 133-C/D service quality performance at the wire center level for roughly half of all Frontier wire centers. Additionally, because some data continues to be reported at the individual wire center level and some wire center names and CLLI codes seem to have been changed or eliminated altogether, these consolidations have made it difficult to accurately integrate multiple datasets for analysis purposes. Henceforth in this Report, we shall refer to Frontier "reporting units" rather than as wire centers.

## Introduction

The study period for Phase 1 of this Network Examination ended in December 2017. Only 21 of the 96 months under examination post-dated the transfer of control of the former Verizon California ILEC entity to Frontier Communications Corp. In order to provide a long-run assessment of the company's service quality performance, it was necessary to include all eight years of trouble report records and other relevant data as submitted by the company under both Verizon and Frontier management. As of the end of December 2019, however, the company will have been under Frontier management for 45 months. During this period, Frontier has put its own stamp on the company's operations and, accordingly, there seems little point in retaining the Verizon ownership period in our analysis. More importantly, and as discussed in greater detail in Chapter 8 below, the company's parent has been in the throws of a massive financial crisis that began shortly after it took over the three former Verizon ILECs - in California, Texas and Florida (the "CTF acquisition") - that ultimately led to its seeking Chapter 11 bankruptcy protection in April 2020. For all of these reasons, our Phase 2 analysis of Frontier California's service quality performance will be limited to the April 2016 through December 2019 period of Frontier ownership.

## Frontier has been hemorrhaging customers almost from the date of the acquisition

Like ILECs nationwide, Verizon California had been losing customers for its legacy services long before it announced its deal in February 2015 to sell the three CTF companies to Frontier for $\$ 10.54$-billion. On the date of that announcement, Verizon California was still serving


ECONOMICS AND
TECHNOLOGY, INC.
approximately 1.45 -million POTS access lines. ${ }^{24}$ By the time the deal closed on April 1, 2016, that number had dwindled by $16.6 \%$, to $1,201,218 .{ }^{25}$ As of the end of the Phase 1 study period (December 31, 2017), Frontier California was serving only 879,489 POTS access lines, ${ }^{26}$ representing a drop of $26.8 \%$, relative to the April 1,2016 acquisition date, and as of the closing date of the Phase 2 study period (December 31, 2019), only 572,975 legacy service access lines remained on the Frontier California network, ${ }^{27}$ a decrease of $52.3 \%$ relative to the April 1, 2016 closing date of the CTF acquisition. ${ }^{28}$ Moreover, these losses were hardly confined to POTStype services. As of February 2015 when the deal was announced, FiOS - Verizon's brand name for its Fiber-to-the-Premises ("FTTP") broadband service - was available to approximately 2.65million homes within the Verizon California operating area. ${ }^{29}$ Indeed, the broad availability of FiOS across all three of the CTF companies was seen as a major justification for Frontier's acquisition. But by the closing date on April 1, 2016, only $\square$ Frontier California customers were still taking FiOS from the company, and as of the end of 2019, that number had dwindled to only $\longrightarrow{ }^{30}$ Table 4F. 1 presents POTS access line data for the Frontier ownership period.

In total, Frontier California, and Verizon California before it, operate approximately 270 wire centers. ${ }^{31}$ Under Verizon ownership, the company had been reporting trouble ticket and out-of-service data separately for each of these 270 wire centers. However, for some unexplained reason, following its takeover, Frontier has administratively -- but not physically -consolidated a number of these individual wire centers for reporting purposes, ultimately into around 198 combined "reporting units." ${ }^{32}$ ETI believes that Frontier's unexplained restructuring of its wire center data undermines the Commission's clear intent, in adopting the variouis GO 133 reporting requirements, of obtaining and tracking service quality at the wire center level. By combining two or more separate wire centers into a single reporting unit, Frontier has effectively concealed its service quality metrics for each of the wire centers that had been

[^11]27. Id.
28. Id.
29. CD Staff has advised us that Verizon offered broadband in 85,973 Census blocks in California at the end of 2015. As of that date there were an estimated $2,645,000$ households in those 85,973 Census blocks. Thus, approximately 2,645,000 households in California were passed by FiOS -capable facilities as of that date.
30. Frontier California Response to CD Data Request 13-F-3.
31. Frontier Response to CD DR 11-F-06, "Attachment 11-F-6 - Confidential Wire Center Name and CLLI Code Data.xlsx".
32. Frontier California response to CD Data Requests 11-F-07, 13-F-01.
consolidated. As a consequence, the Commission can no longer track GO-133 C/D service quality performance at the wire center level for roughly half of all Frontier wire centers.
Additionally, because some data continues to be reported at the individual wire center level, these consolidations have made it difficult to accurately integrate multiple datasets for analysis purposes. Henceforth in this Report, we shall refer to Frontier "reporting units" rather than as wire centers.

Notably, the greatest demand drop-offs generally occurred in the largest reporting units:

Over the 2016-2019 Frontier ownership period, POTS access lines in service experienced a $52.3 \%$ decrease, dropping from 1,201,218 to 572,975 . Thus, in less than four years after taking over the ILEC, more than half of Frontier California's POTS customers had discontinued their service.

Table 4F. 1
FRONTIER CALIFORNIA
DROP-OFF IN POTS DEMAND AT REPORTING UNITS OF VARYING SIZES APRIL 2016 - DECEMBER 2019

Reporting Unit Size	April 1, 2016		December 2017		December 2019	
	Reporting Units	Total lines	Reporting Units	Total lines	Reporting Units	Total lines
0-1,000	81	30,422	88	30,805	101	32,267
1,001-3,000	29	51,011	40	77,591	35	60,164
3,001-10,000	45	269,117	43	290,377	48	272,928
10,001-20,000	27	378,236	19	268,812	12	163,538
20,000+	16	472,432	8	211,904	2	44,078
TOTAL	198	1,201,218	198	879,489	198	572,975

Figure 4F. 1 below tracks total Frontier California POTS access lines in service over the entire 2016-2019 period.


Figure 4F.1. Frontier California has lost more than half of its POTS Access Lines in Service since taking over the company in 2016.

## Trouble Reports and POTS Lines in service - a more granular perspective

Viewed at the individual reporting unit level, the ratio of out-of-service conditions to total POTS lines has varied both from month-to-month and as a long-term trend over time. Focusing specifically upon out-of-service conditions not cleared after 24 hours, some wire centers have experienced significant increases in the incidence of this condition, while others have seen improvements. The following Tables summarize the most recent 24 months' (2018-2019) experience, all under Frontier ownership, with respect to four service quality metrics. Each table provides the 20 wire centers with the poorest and the 10 wire centers with the best performance with respect to each of these four metrics. Table 4 F .2 presents the percentages of out-of-service conditions not cleared within 24 hours (expressed on a per 100 POTS lines per month basis). Table 4F. 3 provides the average out-of-service durations. Table 4F. 4 provides the percentages of out-of-service incidents cleared within 24 hours. Table 4 F .5 provides the number of days to clear $90 \%$ of out-of-service conditions. Table 4F. 6 provides all of these data elements for all post-acquisition Frontier reporting units, sorted alphabetically.



Table 4F. 4																	
FRONTIER CALIFORNIA PERCENT OUT-OF-SERVICE CLEARED WITHIN 24 HOURS 20 POOREST PERFORMING AND 10 BEST PERFORMING WIRE CENTERS 2018-2019																	
Wire Center Name	CLLI	$\begin{gathered} \text { Access Lines } \\ \text { (avg for } \\ \text { Quarter) } \end{gathered}$	$\begin{aligned} & \text { OOS per } 100 \\ & \text { ALs per month } \end{aligned}$	OOS>24 per 100 ALs per month	Pct Cleared win 24 hours (unadj)		\# days to clear 90\% OOS (unadj)	$\begin{aligned} & \text { \# days to } \\ & \text { clear 90\% } \\ & \text { oos (adj) } \end{aligned}$	$\begin{aligned} & \text { Avg oos } \\ & \text { Duration } \\ & \text { (mins) } \end{aligned}$	$\begin{aligned} & \text { Avg CPUC } \\ & \text { OOS } \\ & \text { Duration } \\ & \text { (mins) } \end{aligned}$	$\begin{aligned} & \text { oos } \\ & \text { Total } \end{aligned}$	$\begin{gathered} \text { oos }>1 \\ \text { hour } \end{gathered}$	$\begin{gathered} \text { oos > } \\ 24 \text { Hours } \end{gathered}$	oos >1 week	$\begin{gathered} \text { CPUC OOS } \\ >1 \text { hour } \end{gathered}$	$\begin{aligned} & \text { cpuc oos } \\ & >24 \text { hours } \end{aligned}$	$\begin{gathered} \text { cPuc oos } \\ >1 \text { Week } \end{gathered}$
20 POOREST PERFORMING WIRE CENTERS																	
WALNUT	WLntcaxf	5	0.80	0.80	0.0\%	0.0\%	4.1	3.1	5929	4489	1	1	1	0	1	1	0
VTVL HSPR (GLENDORA)	HSPRCAXF	4	1.09	1.09	0.0\%	0.0\%	11.2	10.2	16080	14640	1				1	1	
MAD RIVER	mDRVCAXF	175	2.04	1.88	8.1\%	37.2\%	13.6	11.6	9923	8381	86	86	79	38	61	54	21
TOPANGA	TPNGCAXF	610	0.81	0.72	10.2\%	56.8\%	24.5	12.7	12979	7689	118	118	106	51	66	51	18
OLANCHA (OJAI)	OLNCCAXF	89	0.89	0.80	10.5\%	63.2\%	13.6	12.5	7690	9729	19	19	17	6	9	7	2
GLENNVILLE	GLVLCAXF	343	1.90	1.70	10.8\%	40.8\%	11.4	7.9	7252	5622	157	157	140	44	113	93	20
Randsburg	RNBGCAXF	42	0.69	0.59	14.3\%	71.4\%	8.0	3.6	6298	2958	7	7	6	2	4	2	0
KENWOOD	kNWDCAXF	317	1.20	1.03	14.3\%	50.5\%	8.6	6.8	7903	3966	91	91	78	23	61	45	8
WILLOW CRK	wWCKCAXF	804	1.16	0.98	15.2\%	49.8\%	8.0	6.4	5767	4230	223	223	189	50	153	112	16
ROBBINS	RBNSCAXG	74	1.46	1.24	15.4\%	53.8\%	5.6	2.6	3892	2168	26	26	22	2	16	12	0
MIRANTPHST	MRMNCASF	77	5.13	4.26	16.8\%	41.1\%	13.5	12.8	9207	7551	95	95	79	41	74	56	27
badger	BDGRCAXF	67	6.01	4.96	17.5\%	50.5\%	10.5	11.9	7419	6286	97	97	80	28	71	48	14
TRONA	TRONCAXF	440	1.49	1.21	18.5\%	44.6\%	9.0	5.8	5242	3884	157	157	128	27	121	87	11
HOOPA	HOPACAXF	519	0.64	0.52	18.8\%	43.8\%	6.1	4.7	4454	3432	80	80	65	11	61	45	4
berrenda mesa	BRMSCAXF	19	4.61	3.73	19.0\%	61.9\%	5.7	4.9	5162	3592	21	21	17	3	12	8	0
SNELLING	SNNGCAXG	130	3.02	2.41	20.2\%	50.0\%	6.2	4.4	4769	3301	94	94	75	18	67	47	
BENTON	BNTNCAXF	96	1.82	1.43	21.4\%	61.9\%	6.8	4.5	4512	3060	42	42	33		24	16	0
El mirage	ELMGCAXF	81	1.44	1.13	21.4\%	42.9\%	7.8	6.4	6515	5596	28	28	22	5	22	16	
COVELO	CVELCAXF	496	2.33	1.81	22.4\%	48.7\%	14.9	10.7	7894	6134	277	274	215	73	214	142	35
SOLVANG (SANTA YNEZ)	SLVNCAXG	4073	0.89	0.69	22.6\%	47.4\%	9.8	8.8	6115	5064	871	868	674	172	663	458	90
10 BEST PERFORMING WIRE CENTERS																	
mCFARLAND	mCFACAXF	634	1.39	0.68	51.4\%	75.0\%	3.5	2.0	2191	1490	212	209	103	8	164	53	${ }^{2}$
HERMOSA BEACH/MANHATTAN BI	IHRBHCAXA	24438	0.36	0.17	52.0\%	71.5\%	4.4	2.8	2715	1949	2100	2084	1007	118	1754	598	44
EXETER	EXTRCAXF	1580	1.04	0.50	52.2\%	74.2\%	4.3	2.5	2774	1783	395	391	189	25	315	102	8
BIG BEAR CITY	BBCYCAXF	1537	0.73	0.34	52.6\%	78.4\%	5.6	2.6	3008	1609	268	264	127	26	209	58	3
desert Center	DSCTCAXG	20	10.87	5.12	52.9\%	68.6\%	3.9	4.0	3291	2761	51	51	24		46	16	3
CLEMENTS	CLEMCAX	262	1.72	0.75	56.5\%	76.9\%	4.5	2.9	2399	1702	108	107	47		88	25	2
CHINO/LOS SERRANOS	CHNOCAXF,	12546	0.34	0.15	56.8\%	73.0\%	2.9	1.7	1960	1478	1022	1018	441	18	874	276	8
CALIFORNIA CITY	CFCYCAXF	969	0.98	0.41	58.1\%	75.8\%	4.0	2.0	2157	1380	227	226	95		191	55	
LANCASTER ANTELOPE (H) VISTA	Lncscaxf	58	1.36	0.50	63.2\%	68.4\%	4.9	4.3	2152	1839	19	19	7		18	6	
FORT IRWIN	FTIRCAXF	159	0.05	0.00	100.0\%	100.0\%	0.4	0.4	492	492	2	2	0	0	2	0	0



	   ジ                 


	     -        





## Frontier Service Quality Performance

In this section, we present the companywide results in a form comparable to that provided above for AT\&T. Appendix 4F-1 provides a compilation of individual wire center and reporting unit statistics covering the Frontier ownership period and includes, for each wire center (or reporting unit under Frontier), data and trend line calculations for several performance metrics relating to OOS conditions cleared within varying lengths of time.

## Effect of persistent access line losses on the volume of customer trouble reports

As noted above, over the April 2016 to December 2019 study period, Frontier California experienced a net loss of 628,243 of its POTS access lines, going from 1,201,218 ss of April 1, 2016 to only 572,975 as of December 2019, a 52.3\% drop-off. Notably, the calculated long-term trend in total out-of-service incidents decreased by only $28.5 \%$, from 17,824 in the second quarter of 2016 to 12,752 in the fourth quarter of 2019. Thus, while POTS lines in service saw a $52.3 \%$ decrease over the period, out-of-service incidents decreased by about 28.5\% (see Figure 4F.2). Over the period of Frontier ownership, the relative drop-off in legacy POTS access lines greatly exceeded the relative decrease in total out-of-service incidents. Out-of-service incidents per 100 access lines in service thus increased over the period under Frontier management. The relationship between these two downward trends is also demonstrated in Figure 4F.2, which plots both the drop-off in access lines and in out-of-service incidents. Figure 4 F .3 plots the number of out-of-service incidents per 100 POTS lines in service, and shows this metric steadily increasing from a predicted level of 0.50 in the second quarter of 2016 to 0.75 in the fourth quarter of 2019 , a $50 \%$ increase. Over the 2018-2019 Phase 2 study period, this metric increased from a predicted value as of the beginning of 2018 of .055 to 0.77 as of the end of 2019 , an increase of $41.8 \%$ in just the past two years.



Figure 4F.2. The number of Out-Of-Service incidents has fallen by a smaller percentage than the drop-off in POTS access lines over the 2016-2019 period of Frontier ownership.


Figure 4F.3. There has been a steady upward trend in the number of out-of-service incidents per 100 access lines in service under Frontier ownership, and a further increase over the 2018-2019 Phase 2 study period.

## Out-of-service conditions

Not only has Frontier seen a significant upward trend over the 45 -month Phase $1 / 2$ study period in the total number of out-of-service incidents per 100 access lines, the number of out-of-service incidents extending for more than 24 hours per 100 access lines, which had been falling over the first seven quarters of Frontier ownership, has reversed course and is rising over the 2018-2019 Phase 2 period, as shown in Figure 4F.4.

## Duration of out-of-service conditions

A principal focus of the Commission's concerns regarding ILEC service quality is with respect to the frequency and duration of out-of-service conditions. GO 133-C/D has placed particular emphasis upon protracted out-of-service situations, focusing specifically upon POTS lines that are not restored within the first 24 hours.

Gains that had been achieved by Frontier in reducing the actual durations of reported OOS conditions occurring in the immediate post-acquisition period were reversed, with outages becoming progressively longer in overall duration after 2017. Figure 4F. 5 plots the average duration of all out-of-service conditions. The immediate post-acquisition improvement also reversed course after the beginning of 2018. As shown in Figure 4F.6, a similar pattern can be seen for the average duration of all out-of-service conditions in excess of one hour - this metric eliminates those incidents than can typically be easily resolved through telephonic interaction with the customer, such as advising the customer to make sure that the handset is plugged in or that the battery in a cordless phone has not run down. Even the most problematic out-of-service situations - those extending beyond 24 hours - which had held roughly constant over the 20162017 period, showed a marked increase in average duration for 2018-2019 (Figure 4F.7). Figures 4F. 8 and 4F. 9 present these same metrics on an adjusted basis (i.e., excluding Sunday and holiday hours and OOS conditions beyond management's control), both of which follow similar patterns to those for actual durations.

Improvements in service quality that were accomplished during the first seven quarters following Frontier's takeover were reversed in 2018-2019, which saw increases in the numbers of service outages lasting more than 24 hours and in the average duration of all service outages.


Figure 4F.4. The number of out-of-service incidents exceeding 24 hours per 100 access lines was initially decreasing under Frontier ownership, but has now been on the rise over the 2018-2019 period.


Figure 4F.5. The average duration (actual) of all out-of-service conditions had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.


Figure 4F.6. The average duration (actual) of out-of-service conditions greater than one hour had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.


Figure 4F.7. Average actual (actual) duration of all out-of-service incidents in excess of 24 hours in duration has been trending upward over the 2018-2019 period.


Figure 4F.8. Average duration of all out-of-service incidents adjusted for Sundays and holidays had been improving during the first two years of Frontier ownership, but that trend has sharply increased over the 2018-2019 period.


Figure 4F.9. Average duration of all out-of-service incidents in excess of 24 hours adjusted for Sundays and holidays has been trending upward over the 2018-2019 period.

## Out-of-service conditions cleared within 24 hours

GO 133-C/D §3.4(c)'s "Minimum Standard Reporting Level" requires that " $90 \%$ of all out of service trouble reports [be cleared] within 24 hours [as] the set minimum standard." As Table 4F. 7 demonstrates, over the 45-month period under Frontier management, Frontier California has never come even remotely close to meeting this $90 \%$ requirement. Figures 4 F. 10 and 4F. 11 plot these percentages and trends graphically for actual and adjusted OOS durations, respectively. There were improvements immediately following the Frontier acquisition, but these gains were not sustained in 2018-2019.

	PERCENTAG OUT-OF-SERVIC   AND	Table 4   RONTIER CA   OF ACTUAL CONDITIONS YS REQUIRED	ORNIA   D ADJUSTED EARED WITHIN O CLEAR 90\%	PUC") HOURS
	Actual		Adjusted	
	Pct. Cleared within 24 hours	Days Required to Clear 90\%	Pct. Cleared within 24 hours	Days Required to Clear 90\%
2Q2016	22.0\%	5.70	28.0\%	4.72
3Q2016	38.8\%	3.95	44.5\%	3.01
4Q2016	53.7\%	3.75	60.6\%	2.77
1Q2017	31.1\%	6.23	36.8\%	5.08
2Q2017	63.1\%	3.04	70.0\%	2.14
3Q2017	63.6\%	3.06	72.2\%	2.15
4Q2017	69.0\%	2.69	78.6\%	1.77
1Q2018	56.3\%	3.27	66.3\%	2.30
2Q2018	65.6\%	2.85	79.3\%	1.78
3Q2018	66.8\%	2.80	79.3\%	1.74
4Q2018	52.4\%	3.44	75.1\%	2.06
1Q2019	16.1\%	10.70	48.6\%	8.17
2Q2019	29.8\%	7.65	59.3\%	5.39
3Q2019	28.4\%	6.07	61.5\%	4.68
4Q2019	35.3\%	4.99	63.3\%	3.11

Frontier's ability to clear OOS conditions quickly - i.e., over time, a successively smaller percentage of OOS conditions were being cleared within 24 hours - varied. On an actual basis (Figure 4F.10), Frontier had seen improvements in clearing OOS conditions within 24 hours over the April 2016 to December 2017 period, but that percentage decreased over the 2018-2019 period.. The same pattern existed when examined on an adjusted basis (Figure 4F-11). Taken over the entire 45 months under Frontier management, the percent of outages cleared within 24
hours decreased with respect to actual durations, but improved slightly with repsect to adjusted durations, even though both metrics saw declines over the 2018-2019
$57.85 \%$ of the roughly 112,022 out-of-service conditions (34.84\% on an "adjusted" basis) remained uncleared after 24 hours by Frontier during the 2018-2019 Phase 2 period. For the 118,402 out-of-service conditions during the 4/2016-12/2017 Phase 1 period, $53.83 \%$ ( $47.01 \%$ on an adjusted basis) remained uncleared after 24 hours. To satisfy the GO 133-C/D §3.4(c) requirement, these percentages would need to drop to less than 10\%.


Figure 4F.10. Percentage of all out-of-service conditions cleared within the first 24 hours (actual) had been improving during the first two years of Frontier ownership, but that trend has sharply decreased over the 2018-2019 period.


Figure 4F.11. Percentage of all out-of-service conditions cleared within the first 24 hours (adjusted for Sundays and holidays) had been improving during the first two years of Frontier ownership, but that trend has sharply decreased over the 2018-2019 period.

As with AT\&T, ETI's other approach to examining this " $90 \%$ cleared within 24 hours" requirement is to calculate the average length of time it took for Verizon or Frontier to reach the $90 \%$ cleared threshold. These results are also summarized on Table 4F. 7 above, and are plotted on Figures 4F. 12 (actual) and 4F. 13 (adjusted) below. Both metrics saw improvement over the April 2016 to December 2017 period but, as with the other out-of-service metric we examined, these gains did not persist into 2018-2019.

As we noted in our Phase 1 Report (Chapter 2), there were only two months over the entire Phase 1 2010-2017 study period where Verizon California or Frontier California had succeeded in meeting the GO 133-C/D §3.4(c) " $90 \%$ cleared within 24 hours" requirement. This was in February and March 2016, the final two months under Verizon ownership. In D.15-12-005, the decision approving the transfer of the company from Verizon to Frontier, the Commission had imposed such pre-transaction compliance as a condition for approval of the transfer. ${ }^{33}$ Verizon did, in fact, meet the " $90 \%$ cleared within 24 hours" requirement in the two months immediately preceding the transfer, but once Frontier took over the company it has been unable to come even close to satisfying this condition at any point under its ownership. In fact, under Frontier ownership, the number of days required for Frontier California to meet the $90 \%$ objective has increased.
33. D.15-12-005, Decision Granting Application Subject to Conditions and Approving Related Settlements, December 9, 2015, at 67.


Figure 4F.12. Days required to clear $90 \%$ of all out-of-service conditions (actual) had been dropping during the first two years of Frontier ownership, but that trend has been getting longer over the 2018-2019 period.


Figure 4F.13. Days required to clear $90 \%$ of all out-of-service conditions (adjusted for Sundays and holidays) had been dropping during the first two years of Frontier ownership, but that trend has been getting longer over the 2018-2019 period.

Table 4F.8(a) and (b) provide the results of linear regression trend line calculations for the GO 133-C/D §3.4(c) "minimum standard" of " $90 \%$ of all out of service trouble reports within 24 hours" for each of the Frontier California Reporting Units. Table 4F.8(a) covers the full 45 month period of Frontier ownership;Talbe 4F.8(b) is limited to the Phase 22018 -2019 period. As with AT\&T, there was considerable variation across all of Frontier's 201 Reporting Units both in terms of percent of out-of-service trouble tickets cleared within 24 hours and the number of days required to clear $90 \%$ of all out-of-service conditions. The tables also provide similar trend line calculations for the number of days required to clear $90 \%$ of all out-of-service conditions, the number of out-of-service reports per 100 access lines, and the average out-of-service duration. The individual wire center regression calculations shown on Tables 4F.8(a) and (b) were prepared using quarterly time-series data. The tables provide the starting and ending predicted values for the variable being examined (e.g., the starting and ending predicted values for the percentage of out-of-service tickets cleared within 24 hours) and the mean value over the full 45 month period (Table 4F.8(a)) or the 2-year Phase 2 period (Table 4F.8(b)).

The values shown for the trend lines are the coefficients of the independent variable in each case - i.e., the quarterly time period - which when applied to the time variable produced the predicted value for the percent cleared within 24 hours, or the number of days required to clear $90 \%$. The coefficient would appear graphically as the slope of a plotted trend line. For the "percentage cleared within 24 hours" metric, a positive value of the coefficient indicates improvement over time (i.e., an upward sloping trend line); a negative value indicates that over time the ILEC's record of meeting this standard has been deteriorating. For "days required to clear $90 \%$," a negative value of the slope of the trend line indicates that, over time, it is taking less time for the ILEC to meet the $90 \%$ completion objective - thus, an improvement in performance. Positive values for the coefficient of "days required to clear $90 \%$ " indicates that it is taking longer for the Company to reach the target $90 \%$ cleared threshold.

We have sorted these tables by the coefficient of Percent Cleared within 24 Hours, from lowest (i.e., most negative, or worst result) to highest (most positive, or best result). The "Coefficients" shown for each of the four metrics on this table represent the slope of the estimated trend line based upon the actual out-of-service incidents experienced in the wire center over the full 45 -month period (Table 4F-8(a)) and for the 2-year 2018-2019 period (Table 4F8(b)). A positive value for the coefficient indicates an upward trend - i.e., that if plotted on a graph the trend line would go from the lower left to the upper right of the chart. The higher the positive value of a coefficient, the greater the rate of increase over time.


ECONOMICS AND
|






























|

CONFIDENTIAL AND PROPRIETARY PER P.U. CODE § 583, GENERAL ORDER 66-D, \& D.16-08-024


ECONOMICS AND


The regression coefficient represents the change, up or down, in the trend on a per-quarter basis. For example, the following values are shown for Frontier's San Bernardino wire center (SNBRCAXK) over the 2016-2019 period with respect to the Percent Cleared within 24 Hours metric. We selected San Bernardino for this example because of the significant change in service quality performance that occurred after 2017:

San Bernardino - Percent out-of-service cleared within 24 hours - 2Q2016-4Q2019					
Mean Value (Mean Val)	Regression Coefficient (Coef)	$t$-statistic ( $t$-stat)	Confidenc e Interval (Conf.)	Starting value   - 2nd Quarter 2016   (2Q16 Value)	$\begin{aligned} & \text { Ending value - } \\ & \text { 4th Quarter } \\ & 2019 \\ & \text { (4Q19 Value) } \end{aligned}$
43.10\%	-1.1805	-0.9379	63.5\%	51.36\%	34.83\%

From this, we learn that the mean (average) percentage of out-of-service conditions cleared by Frontier within 24 hours was $43.10 \%$ over the full 45 -month period. At the beginning of the period (second quarter 2016), the predicted regression trend line indicated that Frontier was clearing $51.36 \%$ within 24 hours; by the end of the period (fourth quarter of 2019), that performance indicator had dropped to only $34.83 \%$. These are not the actual clearance percentages for either of the two quarters; they are the predicted rate of OOS clearances based upon the linear regression calculation. The "regression coefficient" of -1.1805 is interpreted as the rate of change in the predicted trend per quarter - i.e., as each quarter went by, the percent cleared within 24 hours was decreasing by approximately $1.1805 \%$. The $t$-statistic is a measure of the statistical significance of the estimated coefficient, specifically, the confidence that the regression coefficient is significantly different from zero. In general, a $t$-statistic with an absolute value in excess of roughly 2.0 denotes statistical significance at the $95 \%$ confidence level. Here, a $t$-value of -0.9379 corresponds to a confidence level of $63.5 \%$. The confidence level corresponding with the $t$-values are also provided on the tables. In this instance, the performance of the San Bernardino wire center with respect to the "percent cleared within 24 hours" metric is, in and of itself, not statistically significant over the full 45-month time frame. However, as we discuss below, our analysis does not end with this determination.

If we then compare the results for the San Bernardino wire center over the full 2016-2019 period with the corresponding results for just the 2018-2019 Phase 2 study period from Table 4A.8(b), we observe a dramatic shift in performance:

San Bernardino - Percent out-of-service cleared within 24 hours						
Period	Mean   Value   (Mean Val)	Regression   Coefficient   (Coef)	$t$-statistic   $(t$-stat)	Confidence   Interval   (Conf.)	Starting value - 2nd   Quarter 2016   (2Q16 Value)	Ending value - 4th   Quarter 2019   (4Q19 Value)
2Q16-4Q19	$43.10 \%$	-1.1805	-0.9379	$63.5 \%$	$51.36 \%$	$34.83 \%$
1Q18-4Q19	$41.60 \%$	-6.3893	-4.1174	$99.6 \%$	$105.49 \%$	$16.04 \%$

The regression coefficient for the 2018-2019 period has become highly negative, at -6.3893 , indicating a highly pronounced downward trend. The high value for the $t$-statistic, at -4.1174 , reflecting a confidence level of $99.6 \%$, further confirms the statistical significance of this dropoff in performance.

Although the $t$-statistics for many of the individual wire centers on both Tables 4F.8(a) and 4F.8(b) are relatively low, it would be incorrect to dismiss the regression results as lacking in statistical significance. Both tables have been sorted in order of the regression coefficient, from most negative to most positive.

## Regression analyses covering all Frontier wire centers over time using a "Fixed Effects Panel Model."

The individual wire center regression results in Table 4F.8(a) show that the Percent of OOS Cleared Within 24 Hours had been steadily decreasing over the 2Q2016-4Q2019 period for the majority of Frontier wire centers. The results in Table 4F.8(b) show that the Percent of OOS Cleared Within 24 Hours was decreasing at an even greater rate during the Phase 2 study period 1Q2018-4Q2019. Several key observations can be drawn from an exmination of the individual wire center regression results in these two Tables:
(1) The $t$-statistics on the regression coefficient for many individual wire centers, particularly when viewed over the full 2Q2016-4Q2019 period, is relatively low, possibly raising questions as to the statistical significance of these results.
(2) However, for the vast majority of individual wire centers, the regression coefficient taken over the entire 2Q2016-4Q2019 period is negative, indicating a downward slope of the trend line.
(3) The slope of the Phase 2 (1Q2018-4Q2019) trend line is in almost every instance considerably more negative than for the entire 2Q2016-4Q2019 period, irrespective of the confidence level indicated by the $t$-statistic for any particular wire center.

There are several possible explanations for the relatively low $t$ values for many of these individual wire center regressions. First, we are dealing with a very limited number of observations 15 quarters over the full period under Frontier management, and only 8 quarters within the Phase 2 study period. Second, for many individual wire centers, there appear to be large variations from one period to the next. On the other hand, and as noted above, the trend lines for most wire centers follow a similar pattern irrespective of the nominal statistical significance of the individual regression results. In order to further corroborate these seemingly consistent patterns indicated by the individual wire center regression calculations, we utilized a technique known as a "Panel Model" that combines both the temporal and cross-sectional (across all Frontier wire centers) variation in the trouble report data so as to determine the average performance across all Frontier wire centers over time. This is accomplished by formulating several "fixed effects regression models" using quarterly data for the complete set of Frontier wire centers. A "fixed

effects regression" or "panel data model" allows us to estimate the average time trend over all Frontier wire centers while controlling for any time-invariant factors that might affect wire center performance, such as geography, transmission technology, or any other wire centerspecific attributes that are fixed over time). By pooling data from all wire centers together, the fixed effects model generates an estimate of the average time trend across all wire centers (the slope coefficient). This is far more precise than any individual wire center regression result because the model includes many more observations. Like the individual wire center regressions, the fixed effects model estimates an equation of the form,

$$
y_{\mathrm{it}}=\beta_{0}+\beta_{1} x_{\mathrm{it}}
$$

where $y_{\mathrm{it}}$ is the dependent variable (e.g. percent cleared within 24 hours), $x_{\mathrm{it}}$ is the independent variable (in this case, time), and the subscripts i and t denote the wire center and quarter, respectively. Similar to the individual wire center regressions, $\beta_{0}$ essentially represents the average intercept across all wire centers, and $\beta_{1}$, the regression coefficient, represents the average time trend across all wire centers. Also, like the individual wire center regressions, the fixed effect model produces summary statistics such as $t$-statistics, an F-statistic, and an R-squared, all of which can be used to evaluate the precision and fit of the model's results.

The tables below display the results of three fixed effects regressions for three distinct time periods, 2Q2016-4Q2019, 2Q2016-4Q2017 (Phase 1), and 4Q2017-4Q2019 (Phase 2). Table 4F. 9 provides the regression statistics for the Percent Cleared within 24 hours (Actual) metric. Tables 4F. 10 through 4F. 12 provide regression statistics for the Out of Service per 100 Access Lines-Monthly, Average Out-of-Service Duration, and Days Required to Clear 90\% (Actual). Table 4F. 9 shows that, over the period 2Q2016-4Q2019 and across all Frontier California wire centers, on average the Percent of OOS Cleared Within 24 Hours decreased by $0.875 \%$ each quarter. Estimating separate trends for Phase 1 and Phase 2 of the Network Examination, we can determine how Frontier's performance changed over time. During Phase 1,the Percent of OOS Cleared Within 24 Hours taken across all Frontier wire centers increased, on average, by 5.173\% each quarter, while in Phase 2, that same metric taken across all Frontier wire centers decreased, on average, by $5.335 \%$ each quarter. Each of these trends is statistically significant at the $99 \%$ confidence level.


Table 4F. 9			
$\begin{gathered} \text { FRONTIER CALIFORNIA } \\ \text { FIXED EFFECTS REGRESSION RESULTS } \\ \text { Dependent Variable - Percent Cleared within } 24 \text { hours (Actual) } \end{gathered}$			
Regression Statistic	2Q2016-4Q2019	2Q2016-4Q2017	4Q2017-4Q2019
Slope Coefficient	-0.91038	5.091216	-5.2068
$t$-statistic	-8.49642	13.49695	-22.6517
Intercept	48.99126	24.68729	98.57107
$t$-statistic	57.15331	16.36167	38.98408
R-squared	0.029841	0.238543	0.332473
F-statistic	72.1892	182.1676	513.1009
No. of Observations	2850	1330	1710

## Table 4F. 10

FRONTIER CALIFORNIA
FIXED EFFECTS REGRESSION RESULTS
Dependent Variable - Days Required to Clear 90\% (Actual)

Regression Statistic	2Q2016-4Q2019	2Q2016-4Q2017	4Q2017-4Q2019
Slope Coefficient	0.219131	-0.12265	0.531863
$t$-statistic	10.49139	-1.48148	8.108135
Intercept	3.374997	4.844577	-0.26069
$t$-statistic	20.19822	14.62879	-0.36129
R-squared	0.035189	0.003495	0.058317
F-statistic	110.0694	2850	2.194788
No. of Observations	1330	65.74185	

## Table 4F. 11

FRONTIER CALIFORNIA FIXED EFFECTS REGRESSION RESULTS
Dependent Variable - Out of Service per 100 Access Lines-Monthly

Regression Statistic	2Q2016-4Q2019	2Q2016-4Q2017	4Q2017-4Q2019
Slope Coefficient	-0.02394	-0.20901	0.082792
$t$-statistic	-0.33715	-0.93629	6.343029
Intercept	1.543705	2.258593	0.320859
$t$-statistic	2.717106	2.529421	2.234764
$R$-squared	0.000256	0.002701	0.04804
F-statistic	0.113671	0.876633	40.23402
No. of Observations	2850	1330	1710

Table 4F. 12

FRONTIER CALIFORNIA
FIXED EFFECTS REGRESSION RESULTS
Dependent Variable - Average Out-of-Service Duration

Regression Statistic	2Q2016-4Q2019	2Q2016-4Q2017	4Q2017-4Q2019
Slope Coefficient	148.8772	49.79737	298.8095
$t$-statistic	8.728219	0.764724	6.315532
Intercept	3753.054	4263.884	1997.771
$t$-statistic	27.50378	16.36981	3.838563
R-squared	0.033573	0.001025	0.040151
F-statistic	76.18181	0.584803	39.88594
No. of Observations	2850	1330	1710

We have plotted the results of these four sets of panel models separately on Figures 4F.3(p), 4F.5(p), 4F.10(p) and 4F.12(p) below, which correspond to Figures 4F.3, 4F.5, 4F. 10 and 4F. 12 above. These charts utilize a graphics format known as a "Box Diagram." In addition to plotting the individual period trend lines based upon the regression results for each of the three time periods, the box diagrams also show, in a "box" for each time period, the range of individual wire center results that fall within the second and third quartiles - i.e., between the 25th and 75th percentile. The diagram to the right illustrates the components of the Box Diagram.

The charts provide panel model regression results for Out of Service per 100 Access LinesMonthly (Figure 4F.3(p)); Average Out-ofService Duration (Figure 4F.5(p)); Percent Cleared Within 24 Hours (Figure 4F.10(p)); and Days Required to Clear 90\% (Figure 4F.12(p)). Two versions of each of these box diagrams are provided. The chart at the top of each page omits outliers; the one at the bottom includes them. For some of these, the outliers are so distant from the "box" depicting the second and third quartiles that the scaling of the chart requires that they be squeezed together at the bottom. By providing both versions, it is easier to appreciate both the
 trend and the extent of variation of individual wire center performance.

A clear pattern emerges for all four of these metrics: Improvement over the initial period of Frontier ownership, followed by a significant reversal over the 2018-2019 Phase 2 period.



Figure 4F.3(p): Panel Model Box Diagram: Out-of-Service per 100 Access Lines - Monthly.


Figure 4F.5(p): Panel Model Box Diagram: Average Out-of-Service Duration (Actual).



Figure 4F.10(p): Panel Model Box Diagram: Percent Out-of-Service Cleared Within 24 Hours (Actual).


Figure 4F.12(p): Panel Model Box Diagram: Days Requires to Clear 90\% of Out-of-Service Conditions (Actual).

## Effects of geographic and other wire center attributes upon performance results

While examinations of individual wire centers is essential to isolating specific problem areas and sources of concern, it is also instructive to create groups of individual wire centers having similar geographic or other attributes. In that regard, ETI has constructed five different attribute dimensions - (1) the presence of FiOS broadband availability; (2) wire center size (number of access lines); (3) the percentage decrease (loss) in the number of access lines in service to competing providers and/or to competing services over the study period; (4) the population density of the area served by the wire center (households per square mile); and (5) the Frontier Operating Area to which the wire center has been assigned. For each of these five attribute dimensions, ETI has defined a set of categories whose potential effect upon service quality was then individually examined. These are summarized in Table 4F. 13 below. As we did with respect to AT\&T, ETI applied five similar attribute dimensions to the Frontier data and, for each, we developed summary tabulations of pertinent performance data. In Table 4F.14, we show, for each of these five attribute dimensions, the category in which each individual Frontier wire center has been classified.

For example, the Apple Valley wire center in San Bernardino County (APVYCAXF) has been assigned to the "Yes" category with respect to FiOS availability, to the "Large Urban" category with respect to Wire Center Size; to the $60 \%-80 \%$ category with respect to Access Line Loss, to the "54-380 per Square Mile" Density category, and to the Desert Operating Area.


Table 4F. 13   FRONTIER CALIFORNIA WIRE CENTER ATTRIBUTE DIMENSIONS AND CATEGORIES	
Attribute Dimension	Categories
FiOS Broadband Availability	FiOS services available FiOS services not available
Wire Center Size	Fewer than 1000 lines 1,000-2,999 lines 3,000-10,000 lines 10,001-20,000 lines Over 20,000 lines
Access Line Loss	$\begin{aligned} & \hline \text { Lowest 20\% } \\ & 21 \%-40 \% \\ & 48 \%-60 \% \\ & 61 \%-80 \% \\ & \text { Highest 20\% } \end{aligned}$
Density (Households per square mile)	$0-16$ per Sq. Mile 6-54 per Sq. Mile 54-380 per Sq. Mile 380-1700 per Sq. Mile 1700 + per Sq. Mile
Frontier Operating Area	Beach Cities   Costal   Desert   Inland   Northern



ECONOMICS AND



Economicsano

Table 4F.14: WIRE CENTER ATTRIBUTE CLASSIFICATIONS (continued)										
CLLI	Reporting Units (Phase II)	Reporting Unit (Phase I)	County	Operating Area	Density Category	Wire Center Size	FiOS	Category	Income Category	Race Category
	SAN JOAQUIN/									
SNJQCAXF/TRNQCAXF	TRANQUILLITY	SAN JOAQUIN	FRESNO	Northern	6<54	Small	N	40\%-60\%	\$0-\$42,999	40\%-60\%
SNLDCAXF	SUNLD TJNG	SUNLAND/TUJUNGA	LOS ANGELES	Gateway	380<1700	Large Urban	N	80\%-100\%	\$67,000-\$87,999	60\%-80\%
SNMGCAXF	SAN MIGUEL	SAN MIGUEL	MONTEREY	Gateway	0<6	Medium	N	40\%-60\%	\$67,000-\$87,999	80\%-100\%
SNMNCAXG	SANTA MONICA	SANTA MONICA	LOS ANGELES	Beach Cities	>1700	Very Large	Y	-	\$88,000 +	80\%-100\%
SNNGCAXG	SNELLING	SNELLING	MERCED	Northern	0<6	Small	N	20\%-40\%	\$43,000-\$54,999	60\%-80\%
SNPLCAXF	SANTA PAULA	SANTA PAULA	VENTURA	Gateway	54<380	Large Metro	N	20\%-40\%	\$55,000-\$66,999	60\%-80\%
SNTMCAXF	SANTA MARIA/ORCUTT	SANTA MARIA	SANTA BARBARA	Gateway	$380<1700$	Very Large	Y	40\%-60\%	\$55,000-\$66,999	40\%-60\%
LNCSCAXF/EDMTCAXF/SNYMCAXF	MORENO/EDGEMONT/SUNN									
	YMEAD	SUNNYMEAD	RIVERSIDE	Inland	380<1700	Very Large	N	20\%-40\%	\$67,000-\$87,999	40\%-60\%
SPLVCAXF	SEPULVEDA	SEPULVEDA	LOS ANGELES	Gateway	>1700	Very Large	$N$	80\%-100\%	\$67,000-\$87,999	40\%-60\%
SPLVCAXF1	SEPULVEDA 1								\$88,000 +	
SPLVCAXF2	SEPULVEDA 2								\$88,000 +	
SPLVCAXF3	SEPULVEDA 3								\$88,000 +	
SRMDCAXF/PSDNCAXF	SIERRA MADRE/PASADENA	SIERRA MADRE	LOS ANGELES	Coastal	>1700	Large Metro	N	-	\$88,000 +	60\%-80\%
SVYFCAXF	SQUAW VALLEY	SQUAW VALLEY	FRESNO	Northern	$6<54$	Small	N	0\%-20\%	\$67,000-\$87,999	80\%-100\%
SYLMCAXF	SYLMAR	SYLMAR	LOS ANGELES	Gateway	$380<1700$	Large Urban	$N$	80\%-100\%	\$67,000-\$87,999	40\%-60\%
TAFTCAXF/FLWSCAXF/MRCPCAXF										
	TAFT/FELLOWS/MARICOPA	TAFT	KERN	Northerm	$6<54$	Large Metro	N	0\%-20\%	\$55,000-\$66,999	60\%-80\%
THOKCAXF	THOUSAND OAKS	THOUSAND OAKS 2	VENTURA	Gateway	$380<1700$	Very Large	Y	80\%-100\%	\$88,000 +	80\%-100\%
THOKCAXH	THOUSAND OAKS(CONEJO)	CONEJO	VENTURA	Gateway	$380<1700$	Large Urban	Y	20\%-40\%	\$88,000 +	80\%-100\%
	TEMECULA/RANCHO									
TMCLCAXG/RNCACAXF	CALIFORNIA	TEMECULA	RIVERSIDE	Inland	$380<1700$	Large Metro	Y	-	\$67,000-\$87,999	60\%-80\%
TMCVCAXH	timber cove	timber cove	SONOMA	Northern	$0<6$	Small	N	40\%-60\%	\$55,000-\$66,999	80\%-100\%
TPNGCAXF	TOPANGA	TOPANGA	LOS ANGELES	Gateway	54<380	Medium	N	0\%-20\%	\$88,000 +	80\%-100\%
TRONCAXF	TRONA	TRONA	SAN BERNARDINO	Gateway	$0<6$	Small	N	-	\$43,000-\$54,999	60\%-80\%
TVVYCAXF	TIVY VALLEY	TIVY VALLEY	FRESNO	Northern	$6<54$	Medium	N	-	\$67,000-\$87,999	60\%-80\%
	TWENTYNINE									
TWPLCAXF/TWPLCAXG/DSHG	PALMS/MARINE									
CAXF	BASE/DESERT HEIGHTS	TWENTYNINE PALMS	SAN BERNARDINO	Desert	6<54	Large Metro	N	60\%-80\%	\$0-\$42,999	60\%-80\%
UPLDCAXF	UPLAND	UPLAND	SAN BERNARDINO	Inland	$380<1700$	Very Large	Y	0\%-20\%	\$67,000-\$87,999	60\%-80\%
	VICTORVILLE/HELENDALE-									
VTVLCAXA/HNDLCAXF	SILVER LAKES	VICTORVILLE	SAN BERNARDINO	Desert	54<380	Very Large	Y	-	\$55,000-\$66,999	40\%-60\%
WEMRCAXF	WEIMAR	WEIMAR	PLACER	Northern	54<380	Medium	N	20\%-40\%	\$55,000-\$66,999	80\%-100\%
WHTNCAXF	WHITEHORN	WHITEHORN	HUMBOLDT	Northern	$0<6$	Medium	N	0\%-20\%	\$43,000-\$54,999	80\%-100\%
WHTRCAXF	WHITTIER	WHITTIER SOUTH	LOS ANGELES	Coastal	>1700	Very Large	Y	-	\$67,000-\$87,999	40\%-60\%
WHTRCAXJ	PICO RIVERA	PICO	LOS ANGELES	Coastal	$380<1700$	Large Urban	Y	40\%-60\%	\$67,000-\$87,999	40\%-60\%
WLANCAXF	WEST LOS ANGELES	WEST LOS ANGELES	LOS ANGELES	Beach Cities	>1700		N	-	\$67,000-\$87,999	60\%-80\%
WLDNCAXF	SUMMIT VLY	WELDON	KERN	Gateway	0<6	Medium	N	-	\$43,000-\$54,999	80\%-100\%
WLNTCAXF	WALNUT	WALNUT	LOS ANGELES	Coastal	380<1700	Very Large	Y	40\%-60\%	\$88,000 +	20\%-40\%
WMNSCAXF	WESTMINSTER	WESTMINSTER	ORANGE	Beach Cities	>1700	Very Large	Y		\$67,000-\$87,999	40\%-60\%
WRWDCAXF	WRIGHTWOOD	WRIGHTWOOD	SAN BERNARDINO	Desert	6<54	Medium	N	-	\$55,000-\$66,999	80\%-100\%
WVVLCAXG	WEAVERVILLE	WEAVERVILLE	TRINITY	Northern	$6<54$	Large Metro	N	0\%-20\%	\$0-\$42,999	80\%-100\%
WWCKCAXF	WILLOW CRK	WILLOW CREEK	HUMBOLDT	Northern	0<6	Medium	N		\$0-\$42,999	40\%-60\%
YCVYCAXG	YUCCA VALLEY	YUCCA VALLEY	SAN BERNARDINO	Desert	54<380	Large Metro	N	20\%-40\%	\$0-\$42,999	80\%-100\%
YERMCAXF	BRSW YERM/YERMO	YERMO	SAN BERNARDINO	Desert	$0<6$	Small	N	-	\$55,000-\$66,999	60\%-80\%

We have prepared a set of four (4) graphs for each of the five category dimensions that correspond to Frontier Companywide graphs provided above. Table 4F. 15 below provides an index to the figures provided for each set of attributes.

Table 4F. 15
SUMMARY OF FRONTIER ATTRIBUTE DIMENSION GRAPHS

	Company wide	Broadband	Wire Center Size	POTS Line Loss	Density	OPA
OOS per 100 Access Lines	Fig. 4F. 3	Fig. 4F. 14	Fig. 4F. 18	Fig. 4F. 22	Fig. 4F. 26	Fig. 4F. 30
Avg OOS>24 hrs Duration	Fig. 4F.7, 9	Fig. 4F. 15	Fig. 4F. 19	Fig. 4F. 23	Fig. 4F. 27	Fig. 4F. 31
Pct OOS cleared in 24 hrs	Fig. 4F.10, 11	Fig. 4F. 16	Fig. 4F. 20	Fig. 4F. 24	Fig. 4F. 28	Fig. 4F. 32
Days required to clear 90\%	Fig. 4F.12, 13	Fig. 4F. 17	Fig. 4F. 21	Fig. 4F. 25	Fig. 4F. 29	Fig. 4F. 33

## Wire Centers that had been upgraded to FTTP

Although this study and GO-133-C/D are primarily focused upon traditional circuit-switched POTS services, the fact that a particular wire center has been upgraded with a Fiber-to-thePremises ("FTTP") distribution infrastructure enabling it to support FiOS broadband services is an indication that, prior to its sale of the company to Frontier, Verizon had undertaken to invest in and to upgrade the central office and outside plant facilities therein. Following the transfer, Frontier has also upgraded some non-FiOS wire centers for broadband services, albeit on a limited basis. FiOS branded services include high-speed Internet access, digital IPTV, and VoIP telephone services. These services require the replacement of the copper loop and drop segments with fiber. ${ }^{34}$

In Chapter 3 of our Phase 1 Report, we noted that the overwhelming majority of the central office switches that provide POTS services are quite old, in some cases twenty to thirty years old. These switches have, for the most part, remained in service and continue to proide legacy circuit-switched voice telephone service. The switch upgrades that have occurred in the 20102017 time frame were primarily aimed at supporting or expanding the scope of packet-switched services such as VoIP and high-speed Internet access in the residential/small business market or advanced high-capacity services to enterprise and government customers. Recent outside plant upgrades made primarily to support advanced services will often confer a direct service quality benefit to legacy POTS customers as these customers are migrated to the new distribution architecture. But however these new plant upgrades and acquisitions are being utilized, there is a reasonable expectation that some overall improvement in POTS service quality should result. To test this hypothesis, ETI deemed the presence of FiOS -capable FTTP plant in a given wire center as an indicator that the ILEC had upgraded its central office and/or outside plant facilities overall.

[^12]As of the April 1, 2016 acquisition date, and as summarized on Table 4F. 16 below, just under two-thirds of Frontier California's POTS customers were being served out of wire centers that had been upgraded to offer FiOS. ${ }^{35}$

## Table 4F. 16

FRONTIER CALIFORNIA
CLASSIFICATIONS OF WIRE CENTERS AND REPORTING UNITS WITH AND WITHOUT FTTP UPGRADES AS OF APRIL 2016

FTTP	Frontier   Reporting Units	Frontier   Access Lines	Pct of Access   Lines
Yes	66	786,817	$64.66 \%$
No	123	430,012	$34.34 \%$
TOTAL	189	$1,216,829$	$100.00 \%$
NOTE: Access line counts are as of the April 1, 2016 acquisition date and are approximate			

Using FTTP availability as a surrogate for specific data on capital investment in each wire center, we determined that, as with AT\&T, the presence of FiOS availability in any given wire center has had a positive impact upon POTS service quality being furnished out of that same building - specifically, on the incidence of OOS situations, their duration, and the extent to which the $90 \%$ cleared within 24 hours standard had been achieved. This examination has now been updated to nclude Frontier service quality data through December 2019 as well as to reclassify any additional wire centers that have been upgraded with FTTP facilities since the Phase 1 Study was completed. These results are shown in updated Figures 4F.14, 4F.15, 4F. 16 and 4 F .17 below. In general, wire centers that were upgraded to FTTP performed noticeably better on all OOS metrics than those for which no such upgrade investment had been made. In upgraded wire centers, the number of POTS out-of-service incidents per 100 lines in service was lower; their average duration was decidedly shorter, and the percentage of outages cleared within 24 hours was decidedly higher than in offices without broadband.

The superior service quality performance of fiber-equipped wire centers has persisted under Frontier ownership. In the immediate post-transfer time period (2Q2016 to 4Q2017), Frontier fiber-equipped wire centers showed improvements in the duration-related metrics -- in particular, the percent cleared within 24 hours and the days required to clear $90 \%$ showed noticeable improvement. However, after 2017, all of the performance metrics deteriorated, but locations with fiber continued to out-perform those where no such upgrades had taken place.
35. Frontier response to DR05-F-5, "DR 5 Attachment 4_Confidential.xlsx"; Frontier response to DR 13-F-2, "Att. 13-F-2 16-17 Line Count 11-F-7 format [CONFIDENTIAL].xlsx"

Wire centers upgraded with Fiber-to-the-Premises ("FTTP") capable of providing FiOS broadband services have continued to achieve better service quality performance scores in virtually every category than those without such upgrades. But Frontier lost ground in all of these metrics both in upgraded and non-upgraded wire centers over the 2018-2019 period.

EC


Figure 4F.14. There have been fewer out-of-service conditions per 100 access lines in wire centers with FTTP upgrades, but both categories have seen increases in OOS rates over the 2018-2019 period.


Figure 4F.15. Service outages are shorter in wire centers that have received FTTP upgrades, but following some improvement in FTTP offices following Frontier's takeover, durations have been on the rise in both categories over the 2018-2019 period.


Figure 4F.16. FTTP-upgraded wire centers clear a higher percentage of out-of-service conditions within 24 hours, but following improvement in both categories following Frontier's takeover, the percent cleared within 24 hours has been falling in both categories over the 2018-2019 period.


Figure 4F.17. The number of days needed to clear $90 \%$ of service outages in shorter in FTTP-upgraded wire centers, but following improvement in both categories following Frontier's takeover, the days needed to clear $90 \%$ has been increasing in both categories over the 2018-2019 period.

## Wire Center Size

As with our analysis of the AT\&T data, we expanded the list of wire center size categories from the three specified in GO 133-C/D (Small (1000 or fewer POTS lines), Medium (10012999 lines), and Large ( 3000 or more lines $)^{36}$ ) to the same five categories that we used for AT\&T, splitting Large into Large Metro, Large Urban, and Very Large. Table 4F. 17 below indicates the number of Frontier wire center reporting units falling in each of these five size categories as of April 1, 2016, when ownership was transferred to Frontier.

Table 4F. 17			
FRONTIER CALIFORNIA			
CLASSIFICATIONS OF WIRE CENTERS AND REPORTING UNITS BY POTS LINES IN SERVICE AS OF APRIL 2016			
POTS Line range	Category	Frontier Reporting Units	Frontier Access lines
1,000 or fewer	Small	81	30,422
1,001-2,999	Medium	29	51,011
3,000-9,999	Large	45	269,117
10,000-19,999	Large Urban	27	378,236
20,000 and above	Large Metro	16	472,432
TOTAL		198	1,201,218

Wire centers in all five size ranges generally lost ground in all of the performance metrics over the combined Phase $1 / 2$ study period. Gains that had occurred in the immediate postacquisition time frame were reversed in 2018-2019. Although the ranking is not precise, in general the larger wire centers experienced the fewest service outages per 100 access lines and, for those outages that did occur, the shortest durations and highest clearance within 24 hours percentages overall.


[^13]

Figure 4F.18. The largest wire centers exhibit the fewest number of out-of-service conditions per 100 access lines, but wire centers in all size categories have seen increases in OOS rates over the 2018-2019 period.


Figure 4F.19. Service outages continued to have shorter durations in larger wire centers following Frontier's takeover, but wire centers in all size categories have taken longer to clear over the 2018-2019 period.


Figure 4F.20. The largest wire centers tended to clear a higher percentage of out-of-service conditions within 24 hours, but following improvement in all size categories following Frontier's takeover, the percent cleared within 24 hours has been falling in all size categories over the 2018-2019 period.


Figure 4F.21. The number of days needed to clear $90 \%$ of service outages is shortest in the largest wire centers and had been improving in all but the two smallest size categories following the Frontier takeover, but has been increasing in all size categories over the 2018-2019 period.

## Access Line Loss

Table 4F. 1 and Figure 4F.1, above, trace Frontier California POTS lines in service over the full 2Q2016-4Q2019 period of Frontier ownership. Companywide, Frontier California experienced a net loss of 628,243 of its POTS access lines, going from 1,201,218 on April 1, 2016 to only 572,975 as of December 2019, a $52.3 \%$ drop-off. These POTS losses were offset to some extent by the growth in interconnected VoIP access lines. According to Frontier's August 7, 2020 Response to CD Data Request 13-F-3, Frontier California had residential VoIP lines in service as of the April 1, 2016 acquisition date; by December 31, 2019, that number had been cut in half, to only $\square{ }^{37}$ However, as shown in Chapter 4 Figure 4.4 for all wireline carriers statewide, the gain in VoIP lines, while offsetting to some extent the ILECs' POTS losses, certainly did not come even close to fully replace the drop in POTS demand.

In Table 4F. 18 below, we have assigned each Frontier wire center reporting unit into one of five (5) Access Line Loss categories over the period 2Q2016 through 4Q2019.

	Table 4F. 18	
	NTIER CALIF	
CLAS	TIONS OF WIR NE LOSS PER (quintiles)	TERS BY AGE
Quintile	POTS Loss range	Frontier Reporting Units
< 20\%	< 42\%	40
21\%-40\%	42\% - 48\%	39
41\%-60\%	48\% - 52\%	40
61\%-80\%	52\% - 56\%	39
> 80\%	> 56\%	40
TOTAL		198

Those wire centers and reporting units exhibiting the greatest percentage loss of POTS lines over the study period - exceeding $56 \%$ for Frontier - experienced some improvement both in the number of OOS incidents and in their duration until cleared. Wire centers and reporting units experiencing the smallest losses fared far worse in terms of most metrics. One might infer that
37. Frontier California Response to CD Data Request 13-f-3, "Att. 13-F-3 VoIP Line Count (CONFIDENTIAL).xlsx"
these low-loss wire centers and reporting units serve areas with the fewest competitive alternatives (hence explaining the relatively small losses), suggesting that Verizon has devoted more of its resources and efforts to those communities most impacted by competition for traditional POTS services.

ETI has prepared a set of analyses of the various service quality performance metrics organized by wire centers and reporting units falling into each of the various categories associated with each of these five sets of classifications. Perhaps ironically, those wire centers that had experienced the largest percentage drop-off in POTS demand generally exhibited superior performance on nearly all of the service quality metrics under examination, as shown in Figures 4F. 22 through 4F. 25 below. As we noted in our Phase 1 Report, it would appear that the wire centers experiencing the largest line loss percentages also happen to be those with the largest number of access lines, which happen to be the ones with the best service quality performance overall.:

> The largest increases in service outages occurred in wire centers with the lowest POTS drop-off rates; the incidence of service outages increased more slowly or remained almost constant in wire centers with successively larger drop-off rates.



Figure 4F.22. Wire centers that had experienced the greatest drop-off in demand for POTS services generally exhibited the fewest number of out-of-service conditions per 100 access lines, but that number has been increasing in all line loss categories over the 2018-2019 period.


Figure 4F．23．Service outages tended to be shortest in wire centers that had experienced the greatest drop－off in demand for POTS，but durations have been on the rise in all line loss categories over the 2018－2019 period．


Figure 4F.24. Access line drop-off rates appear to have had little effect upon the percentage of out-of-service conditions within 24 hours, but after gains in all five categories following Frontier's takeover in 2016, significant degradation in this metric has occurred in all loss categories over the 2018-2019 period.


Figure 4F.25. Access line drop-off rates appear to have had little effect upon the number of days needed to clear $90 \%$ of service outages, but after gains in all five categories following Frontier's takeover in 2016, significant degradation in this metric has occurred in all loss categories over the 2018-2019 period.

## Urban/Suburban/Rural

As a general matter and as we observed in Phase 1, out-of-service conditions occur less frequently and are cleared more quickly in wire centers serving the highest density urban areas. Additionally, wire centers serving less dense market areas have exhibited the largest increases both in out-of-service incidents and in the time required to clear them over the 2Q2016-4Q2019 Phase $1 / 2$ study period. Frontier saw gains in several metrics over the first seven quarters following its takeover except in the lowest density wire centers. However, from 2018 onward, these gains were generally reversed across all density. These results are plotted on updated Figures 4F.26, 4F.27, 4F. 28 and 4F. 29 below.

Frontier service quality metrics continue to show the best results in higher-density serving areas.

Except in those areas with the lowest population density, Frontier's response to out-of-service conditions had generally improved over the period immediately following its takeover. However, by 2018, these gains had started to reverse.


Figure 4F.26. Wire centers serving areas with the highest population density exhibit the fewest number of out-of-service conditions per 100 access lines under Frontier management, but wire centers in all density categories have seen increases in OOS rates over the 2018-2019 period.


Figure 4F.27. Service outages tend to be shortest in wire centers serving the more densely populated areas, but wire centers in all density categories have seen increases in OOS duration over the 2018-2019 period.


Figure 4F.28. Wire centers serving the more densely populated areas tended to clear a higher percentage of out-of-service conditions within 24 hours, but wire centers in all density categories have seen reductions in this metric over the 2018-2019 period.


Figure 4F.29. The number of days needed to clear $90 \%$ of service outages is shortest for wire centers serving more densely populatedareas, but wire centers in all density categories have seen increases in days-to-clear over the 2018-2019 period.

## ILEC Organizational Assignment

Frontier has established six (6) "Operating Areas" ("OPAs") that it has designated as Beach Cities, Costal, Desert, Gateway, Inland, and Northern. ${ }^{38}$ As is evident from the results presented on Figures 4F.30, 4F.31, 4F. 32 and 4F. 33 below, there is considerable variation in out-of-service performance across the six operating areas. However, the explanation for this may relate more to the nature of the wire centers falling within each OPA than to any inherent differences in their respective management. Table 4 F .19 summarizes the principal geographic areas falling within the responsibility of each of the six OPAs.

Table 4F. 19
FRONTIER CALIFORNIA OPERATING AREAS

Operating Area	Counties (or portions)	Sample wire centers
Beach Cities	Los Angeles, Orange	Santa Monica, West Los Angeles, Long Beach, Huntington Beach
Coastal	Los Angeles	Downey, Malibu, Pomona
Gateway	Inyo, Kern, Los Angeles, Mono, Monterey, San Bernardino, Santa Barbara, Ventura	San Fernando, Sepulveda, Chino, Los Serranos
Desert	Imperial, Riverside, San Bernardino	San Bernardino, Barstow, Big Bear Lake
Inland	Riverside, San Bernardino	Cucamonga, Ontario South
Northern	Humboldt, Kern, Kings, Marin, Mendocino, Merced, Placer, San Joaquin, Santa Barbara, Santa Clara, Sonoma, Stanislaus, Sutter, Trinity, Tulare, Yolo	China Lake, Randsburg
Source: Frontier response to DR-02F.		

Table 4F. 14 above shows, for each Frontier Reporting Unit, the Operating Area to which it has been assigned, its size (in terms of access lines served) and population density. As we have discussed above, the larger wire centers and those that serve the most densely populated areas

[^14]tend to exhibit superior results on all service quality metrics. There is thus a strong correlation between the overall size and population density associated with each wire center and the Operating Area to which it has been assigned. Thus, the densest portion of Los Angeles County is assigned to the "Beach Cities" OPA. Less dense portions of Los Angeles County fall within the Coastal OPA, while more rural areas are assigned to other OPAs. Not surprisingly, the results for Operating Area, WC Size, and WC Density are similar.

Service quality metrics in all six Frontier Operating Areas generally improved from the April 2016 acquisition date through the end of 2017, but this pattern reversed course starting in 2018. Out-of-service reports per 100 access lines increased slightly even in the 2016-2017 period; but saw a sharper jump beginning in 2018. Over the 2016-2017 period, out-of-service durations grew shorter in the Beach Cities, Coastal and Inland Operating Areas, held steady in the Desert OA, and increased In the Gateway and Northern OAs. However, in 2018-2019, outage durations increased in all six Operating Areas.

The percent of outages cleared within 24 hours increased in all six OAs over the 2016-2017 time frame, although only small gains occurred in the Northern Operating Area. However, that saw a significant reversal in 2018-2019 across all six Operating Areas. A similar pattern can be seen in the Days to Clear $90 \%$ metric - large gains in all OAs other than the Northern, which saw a small increase, in 2016-2017. In 2018-2019, however, Days to Clear $90 \%$ increased in all six Operating Areas.

Service quality metrics in all six Frontier Operating Areas generally improved from the April 2016 acquisition date through the end of 2017, but this pattern reversed course starting in 2018.

The Operating Areas with the largest presence of fiber upgrades continue to exhibit the lowest number of OOS incidents and the shortest outage durations for those that do occur over the full 2016-2018 period.


Figure 4F.30. Frontier's Desert and Northern Operating Areas, which have responsibility for wire centers serving the least densely populated areas, exhibit the highest number of out-of-service conditions per 100 access lines.


Figure 4F.31. Service outages tend to be shorter in those Operating Areas serving more densely populated areas.


Figure 4F.32. Operating Areas serving the more densely populated areas have the best record of clearing a high percentage of out-of-service conditions within 24 hours, but these clearance rates experienced significant increases in all six Operating Areas in 2018-2019.


Figure 4F.33. The number of days needed to clear $90 \%$ of service outages had been improving in all except the Desert Operating Area following the Frontier takeover, but in 2018-2019 all Operating Areas saw significant escalations in outage durations.

## Summary

Overall, ETI's analysis of the 306,151 Frontier Trouble Report records and other pertinent Frontier service quality data indicates that the company's service quality and its response to protracted out-of-service conditions had improved following its April 1, 2016 takeover, but those gains were short-lived. Those Frontier wire centers that have received broadband upgrades in the form of FiOS-capable fiber-to-the-premises ("FTTP") distribution facilities - and hence have benefitted from an infusion of new investment - fared a lot better than those locations where little or no such upgrades had taken place. Service quality and responses to outages in the very largest wire centers - particularly those in the Los Angeles area (the "Beach Cities Operating Areas) actually showed improvements both with respect to the frequency of out-of-service incidents as well as the duration of those outages that did occur, but even here the gains were reversed after 2017.

## 7 AT\&T CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES: PHASE 2 UPDATE

## Principal observations and takeaways

- AT\&T senior management's interest in and attention to its legacy wireline ILEC operations continues to be subordinated to its wireless operations and the more recent satellite TV and video content acquisitions.
- Despite experiencing a 76.4\% drop in legacy switched access lines from 2010 through 2019, AT\&T California's gross revenues decreased by only $31.64 \%$ over the same period.
- Even when confined to only those revenue sources directly attributable to legacy switched access line services, AT\&T California legacy access line-related revenues decreased by only about $53.4 \%$, significantly below the $76.4 \%$ drop in switched access line demand, because AT\&T California has raised its rates for legacy flat-rate residential service by $152.6 \%$ since the service was de-tariffed by the CPUC in 2009..
- This succession of rate increases is consistent with and in support of a "harvesting" strategy aimed at maximizing revenues from existing customers until they ultimately discontinue their service, thus allowing A\&T to maintain revenues despite a massive drop-off in demand.
- AT\&T California's response to the erosion of the market for legacy POTS services has been to raise prices, cut back on investment and maintenance, and instead "harvest" those customers that remain on its network for as long as they continue to take their service.
- The fact that AT\&T has been able to profitably implement a succession of large annual legacy services rate increases for more than a decade since the implementation of URF raises serious questions as to the Commission's conclusion in URF that competition had developed to a point where continued regulatory protection of basic residential telephone service prices is no longer required or appropriate.
- Over the past two years (2018-19), AT\&T California continued to disinvest from its network. The Company had total net after-tax income of $\$ 3.21$-billion, but paid out $\$ 3.42$-million in dividends to its parent company, AT\&T Inc -- i.e. it paid AT\&T dividends that were some $\$ 219.5$-million more than the California company had earned from its ongoing operations.
- Between 2010 and 2019, AT\&T California paid dividends to AT\&T Inc. that exceeded its total net income over the period by roughly $\$ 4.43$-billion.
- A change in the accounting procedures that AT\&T California has utilized for its ARMIS-type reports after 2017 has resulted in a roughly $\$ 5$-billion overstatement of its net Telecommunications Plant in Service for 2018 and 2019.
- Those capital investments that AT\&T has been making in its California ILEC have, for the most part, not been directed at legacy basic voice services.
- AT\&T's "harvesting" philosophy explains why AT\&T has failed to improve service quality for its POTS services at least to the point where the GO 133-C/D standards can be achieved, because the gains it can realize by raising prices and curtailing investment and maintenance far exceed any financial penalties it might suffer from persistently poor service quality.


# AT\&T CORPORATE AND CALIFORNIA <br> ILEC INVESTMENT POLICES <br> PHASE 2 UPDATE 

## TABLE OF CONTENTS

Introduction ..... 278
AT\&T California remains the underlying provider of most retail local network servicesbeing offered under the AT\&T California or other AT\&T affiliate brand names279
The AT\&T California component of parent AT\&T Inc. revenues have been steadilydiminishing, as has the share of the overall AT\&T capital budget that is being allocated tothe California ILEC.280
AT\&T California's response to the rapidly eroding demand for legacy POTS services hasnot been to cut prices to retard such "cord-cutting," but instead to implement large rateincreases so as to "harvest" as much revenue from the remaining POTS customers as long asthey continue to retain their service.284
AT\&T California has continued its practice of disinvesting in its California local network infrastructure. ..... 285
Inter-affiliate transactions at non-arm's length transfer prices also contribute to the parent company's pattern of disinvestment in AT\&T California operations.290
Persistent disinvestment, extensive affiliate transactions at self-serving transfer prices, extraordinarily large rate increases, and deteriorating service quality all point to "harvesting" as AT\&T California's overarching strategy for its legacy services and customers.293
AT\&T California investment in wireline circuit-switched voice services has continued to diminish over the 2018-2019 period. ..... 293
Investments at individual wire centers ..... 297
GO 133-D §9.7 Alternative Investments ..... 325
Summary and conclusions ..... 399


## Tables

Table 7.1: $\quad$ AT\&T California and AT\&T Inc. Total Operating Revenues 2010-2019 281
$\begin{array}{ll}\text { Table 7.2: } & \text { AT\&T California and AT\&T Inc. Legacy Switched Access Lines in } \\ & \text { Service 2010-2019 }\end{array}$
Table 7.3: AT\&T California Operating Revenues Decreased, but by Far less than the Decrease In Legacy Switched Access Lines 2010-2019

Table 7.4: AT\&T California Legacy Switched Access Line Revenues Have Decreased by a Greater Percentage than for Total Operating Revenues Generally, but Still by Far less Than the Decrease in Legacy Switched Access Lines 2010-2019

Table 7.5: AT\&T California Net Income and Dividend Payments to Parent AT\&T Inc. 2010-2019

Table 7.6 AT\&T California Pattern of Investment 2010-2019 287
Table 7.6A: AT\&T California Pattern of Investment 2010-2019 Approximate Pro Forma Adjustments as if USOA Accounting Rules Were Still Being Used for 2018 and 2019

Table 7.7 AT\&T California Affiliate Transactions with Other Units of AT\&T Inc. 2010-2019

Table 7.8: AT\&T California Gross Plant Additions 2010-2019 296
Table 7.9: AT\&T California Digital Electronic Switching Gross Additions and Retirements 2010-2019
$\begin{array}{ll}\text { Table 7.10: } & \begin{array}{l}\text { AT\&T California Circuit Equipment Gross Additions and } \\ \text { Retirements 2010-2019 }\end{array}\end{array}$
Table 7.11: $\quad$ AT\&T California Gross Plant Additions 2010-2019 308
Table 7.12: AT\&T California Gross Additions per Access Line in Service 30 Wire Centers with the Lowest Per-Line Expenditures

Table 7.13: AT\&T California Gross Additions per Access Line in Service 30 Wire Centers with the Highest Per-Line Expenditures

Table 7.14: AT\&T California Gross Additions per Access Line in Service
Table 7.15: AT\&T California Comparison among Plant Investment Categories 2018-2019

Table 7.16: AT\&T California Rehabilitation Expenditures by Wire Center 2018-2019 335
Table 7.17: AT\&T California Comparison of GO 133-D §9.7 "Alternative Proposed Investments" and Total Rehab Expenditures 2018-2019347

Table 7.18: AT\&T California Comparison of GO 133-D §9.7 "Alternative Proposed Investments" and Total 2018-2019 Rehab Expenditures (Sorted by Other Rehab Expenditures -- Largest to Smallest)366

Table 7.19: AT\&T California Service Quality Metrics in Wire Centers Receiving GO 133-D §9.7 "Alternative Investments" and Other Rehab Expenditures 2018-2019 (Sorted by Percent Cleared within 24 Hours)385

## Introduction

This chapter provides updated financial data both for Pacific Bell d/b/a AT\&T California and for its corporate parent, AT\&T Inc. In Chapter 7 of our Phase 1 Report, we offered the following assessment of AT\&T California's financial condition and its investment policies:

- AT\&T California's potential revenue from raising prices and curtailing investments in its legacy POTS services far exceed any financial penalties imposed for its failure to meet the GO 133-C/D service quality standards.
- To support its "harvesting" strategy and maintain revenues despite a massive drop-off in demand, AT\&T California has raised its rates for legacy flat-rate residential service by $152.6 \%$ since the service was de-tariffed by the CPUC in 2009.
- AT\&T Inc. senior management's interest in and attention to its legacy wireline ILEC operations has been largely supplanted by its wireless operations and the recent satellite TV and video content acquisitions.
- AT\&T California financial statements show an incomplete assessment of the ILEC's financial condition due to the large volume of inter-affiliate transactions made at transfer prices that are not set on the basis of arm's length negotiations.
- Cumulatively, over the full 8-year Phase 1 study period, AT\&T California had total net after-tax income of $\$ 3.4$-billion, but paid out $\$ 7.6$-billion to its parent company, AT\&T Inc, thereby eroding the California company's capital base by roughly $\$ 4.2$-billion and impairing its ability to maintain and upgrade its aging infrastructure.
- AT\&T, Inc. has also been eroding its California ILEC's capital base by investing less in its infrastructure than its annual depreciation accruals and retirements.
- AT\&T's "harvesting" philosophy explains why AT\&T has failed to improve service quality for its POTS services at least to the point where the GO 133-C/D standards can be achieved, because the gains it can realize by raising prices and curtailing investment and maintenance far exceed any financial penalties it might suffer from persistently poor service quality.

Our examination of the two additional years of financial results indicates that, for the most part, the various conditions and practices that we had previously identified have persisted and, in some respects, have been further escalated.

## AT\&T California remains the underlying provider of most retail local network services being offered under the AT\&T California or other AT\&T affiliate brand names

The scope of the direct retail offerings by AT\&T California have continued to narrow, confined mainly to legacy circuit-switched local voice telephone access and message services. As AT\&T California has expanded its broadband infrastructure, it has steadily migraded its legacy customer base to bundles of Internet access, VoIP telephone service, terrestrial and satellite video services and, since its acquisition of Time Warner in 2018, a variety of video content. Even where customers continue to be served via circuit-switched voice services, AT\&T California typically bundles the local voice service with long distance telephone service furnished by AT\&T's long distance affiliate. Notably, the retail customer for most of these bundles still receives only one monthly bill, issued by AT\&T California on behalf of itself and whichever other AT\&T affiliates are jointly furnishing the customer's bundle of services. Mechanically, and with the exception of tariffed switched and special access services, the providing affiliates will "purchase" the underlying network services and functions, including billing and collection services, from AT\&T California at mutually-agreed-upon transfer prices. ${ }^{39}$ Where tariffed services are involved, the affiliate will (presumably) be charged the tariff rates.

From the perspective of most residential consumers, the organizational assignment of responsibility for the individual retail offerings, while nominally disclosed on the customer's monthly bill, is of little interest or consequence: Most direct contacts between retail residential/ small business customers and AT\&T are accomplished via AT\&T California, irrespective of which entity is nominally responsible for the retail provision of a particular service within the customer's service bundle.

Even where AT\&T California is not the retail provider of a particular service or service component, its role as the underlying network provider requires that its network be capable of supporting these various affiliate-offered services. For example, AT\&T California has been upgrading its network to support several types of broadband services - U-verse brand IPTV, $U$-verse brand Internet, and $U$-verse brand VoIP-based phone service - by extending fiber into individual neighborhoods in relatively close proximity to its end-user customers under a Fiber-to-the-Node ("FTTN") architecture. ${ }^{40}$ As of the end of 2017, some 557 out of the total of 615 AT\&T California wire centers had been upgraded to support at least one if not all three of these broadband services. ${ }^{41}$ AT\&T California has confirmed that "no AT\&T-CA wire centers that were not Broadband enabled as of May 11,2018 have since been upgraded to become Broadband

[^15]41. AT\&T California Response to CD Data Request 01A.
enabled. ${ }^{42}$ According to its

As discussed in Chapter 4, although the motivation behind the deployment of FTTN, FTTP and other network upgrades is the capability to offer broadband services to compete with cable MSO offerings, once installed these same facilities can and will be used to provide legacy POTS and other circuit-switched services.

## The AT\&T California component of parent AT\&T Inc. revenues have been steadily diminishing, as has the share of the overall AT\&T capital budget that is being allocated to the California ILEC.

Over the 2010-2017 period, AT\&T California's parent AT\&T Inc. had experienced significant growth in its overall gross revenues, rising 29.2\% from \$124.3-billion in 2010 to $\$ 160.5$-billion in 2017. By 2019, AT\&T gross revenues had reached \$181.2-billion. AT\&T's market capitalization as of December 31, 2019 was approximately $\$ 283.5$-billion, although as of December 15, 2020, it had declined to about $\$ 217.5$-billion as a result of the broader COVID-19 economic impacts. The primary sources of AT\&T's revenue growth have come from wireless services, where the number of AT\&T Mobility connections nationwide grew by $73.9 \%$, from 95.4 -million in 2010 to 165.9 -million in $2019,{ }^{43}$ and from several key acquisitions, including DirecTV and Time Warner.


AT\&T California revenues, on the other hand, have been moving in the opposite direction. As shown on Table 7.1 below, in 2010, AT\&T California gross revenues were $\$ 9.70$-billion, dropping to $\$ 8.63$-billion in 2017. Between 2017 and 2019, AT\&T California revenues decreased by another $23.15 \%$, to $\$ 6.63$-billion. AT\&T California's share of total AT\&T Inc. revenues has fallen by an even greater amount, from $7.80 \%$ in 2010 to $3.66 \%$ in in 2019.

[^16]Table 7.1
AT\&T CALIFORNIA AND AT\&T INC. TOTAL OPERATING REVENUES 2010-2019
(\$000,000)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
AT\&T Inc.	124,280	126,723	127,434	128,752	132,447	146,801	163,786	160,546	170,756	181,193
AT\&T CA	9,697	9,754	9,374	9,580	9,641	10,008	9,441	8,626	5,799	6,629
AT\&T CA \%	$7.80 \%$	$7.70 \%$	$7.36 \%$	$7.44 \%$	$7.28 \%$	$6.82 \%$	$5.76 \%$	$5.37 \%$	$3.40 \%$	$3.66 \%$

Source: AT\&T Inc. Annual Reports 2010-2019; AT\&T CA ARMIS 2010=2019 Forms 43-01 as filed with CPUC.

As discussed in Chapter 4A, AT\&T California had experienced a precipitous drop in total legacy circuit-switched access lines over the 2010-2017 period, and that downward trend has persisted into 2018 and 2019. Nationally, AT\&T Inc. had actually sustained a slightly greater access line loss than its California subsidiary, as shown in Table 7.2 below.

Table 7.2

## AT\&T CALIFORNIA AND AT\&T INC. LEGACY SWITCHED ACCESS LINES IN SERVICE 2010-2019

 (000)|  | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AT\&T Inc. | 41,883 | 36,734 | 31,887 | 24,639 | 19,896 | 16,670 | 13,986 | 11,753 | 10,002 | 8,487 |
| AT\&T CA | 7,602 | 6,681 | 5,837 | 4,996 | 4,149 | 3,415 | 2,872 | 2,417 | 2,072 | 1,793 |
| AT\&T CA \% | 18.15\% | 18.19\% | 18.31\% | 20.28\% | 20.85\% | 20.49\% | 20.54\% | 20.56\% | 20.72\% | 21.12\% |
| Source: AT\&T Inc. Annual Reports 2010-2019 "Selected Subscribers and Connections" |  |  |  |  |  |  |  |  |  |  |

Thus, where AT\&T nationally had experienced a net legacy switched access line decrease of 71.9\% over the 2010-2017 period, for California, AT\&T's switched access lines had decreased by slightly less, about $68.2 \%$. Between 2017 and 2019, however, AT\&T nationally lost another $27.8 \%$, or 3.27 -million of its legacy switched access lines; AT\&T California's access line losses were at a slightly lower rate, $25.8 \%$, or 624,000 . Notably, however, despite experiencing a cumulative loss of $76.4 \%$ in legacy switched access lines between 2010 and 2019, AT\&T California gross revenues decreased by only $31.6 \%$ over the same period, as summarized on Table 7.3 below:

Table 7.3

## AT\&T CALIFORNIA OPERATING REVENUES DECREASED, BUT BY FAR LESS THAN THE DECREASE IN LEGACY SWITCHED ACCESS LINES 2010-2019 (\$000,000 and 000)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Revenues	\$ 9,697	\$ 9,754	\$ 9,374	\$ 9,580	\$ 9,641	\$10,008	\$ 9,441	\$ 8,626	\$5,799	\$6,629
\% of 2010		100.59\%	96.67\%	98.79\%	99.42\%	103.21\%	97.36\%	88.96\%	59.80\%	68.36\%
Switched access lines	7,602	6,681	5,837	4,996	4,149	3,415	2,872	2,417	2,072	1,793
\% of 2010		87.88\%	76.78\%	65.72\%	54.58\%	44.92\%	37.78\%	31.79\%	27.25\%	23.58\%

Source: AT\&T CA ARMIS Form 43-01 as filed with CPUC; POTS lines in service derived from GO 133-C § 3.3 and 3.4 Trouble Reports per 100 Lines (TRPH) quarterly filings, 2010-2019. Switched access lines are average over each year.

Clearly, a significant portion of AT\&T California operating revenues come from the ongoing succession of POTS rate increases and from services other than legacy POTS lines. It is thus instructive to compare the decrease in switched access lines more directly with the principal revenue sources associated with these services. Fortunately, more detailed revenue data is provided in the annual financial reports, ARMIS Forms 43-01, 43-02 and 43-03, filed by AT\&T California with the CPUC:

> Despite experiencing a $76.4 \%$ drop in legacy switched access lines from 2010 through 2019, AT\&T California's gross revenues decreased by only $31.64 \%$ over the same period.

As shown in Table 7.4 below, when confined to only those revenue sources directly attributable to legacy switched access line services - specifically, USOA Account 5001 (Basic Area Revenue), ${ }^{44}$ USOA Account 5081 (End User Common Line revenue), ${ }^{45}$ and USOA

[^17]Account 5082 (Switched Access revenue), ${ }^{46}$ AT\&T California legacy access line-related revenues decreased by only about $53.4 \%$, significantly below the $76.4 \%$ drop in switched access line demand. Significantly, Account 5082 Switched Access Revenues - revenues from charges that AT\&T California collects when its legacy access line customers originate or receive calls to or from a long distance carrier (including AT\&T's long distance affiliate) - decreased by almost as much as the number of legacy switched access lines $-70.5 \%$ vs. $76.4 \%$. Switched access rates, which remain subject to tariff at both the state and federal levels, had remained unchanged over the 2010-2017 period.

## Table 7.4


#### Abstract

AT\&T CALIFORNIA LEGACY SWITCHED ACCESS LINE REVENUES HAVE DECREASED BY A GREATER PERCENTAGE THAN FOR TOTAL OPERATING REVENUES GENERALLY, BUT STILL BY FAR LESS THAN THE DECREASE IN LEGACY SWITCHED ACCESS LINES 2010-2019


 (\$000 and 000)|  | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USOA Acct 5001 Basic Area Rev | \$2,118,017 | \$ 2,121,000 | \$ 1,966,000 | \$ 1,882,000 | \$ 1,729,553 | \$ 1,579,000 | \$ 1,448,000 | \$ 1,258,000 | \$1,120,148 | \$1,059,109 |
| USOA Acct 5081 EUCL Revenue | \$ 627,273 | \$ 538,000 | \$ 492,000 | \$ 452,000 | \$ 404,625 | \$ 363,000 | \$ 333,000 | \$ 300,000 | \$224,585 | \$223,304 |
| USOA Acct 5082 Switched Access | \$ 320,356 | \$ 278,617 | \$ 282,585 | \$ 262,064 | \$ 260,174 | \$ 220,886 | \$ 180,913 | \$ 113,694 | \$82,314 | \$94,500 |
| Total switched access line rev | \$3,065,646 | \$2,937,617 | \$2,740,585 | \$2,596,064 | \$2,394,352 | \$2,162,886 | \$1,961,913 | \$1,671,694 | \$1,427,047 | \$1,376,913 |
| Percent of 2010 Switched Access Revenues |  | 95.82\% | 89.40\% | 84.68\% | 78.10\% | 70.55\% | 64.00\% | 54.53\% | 46.55\% | 46.55\% |
| Switched access lines (000) | 7,602 | 6,681 | 5,837 | 4,996 | 4,149 | 3,415 | 2,872 | 2,417 | 2,072 | 1,793 |
| Percent of 2010 Switched Access Lines |  | 87.88\% | 76.78\% | 65.72\% | 54.57\% | 44.92\% | 37.78\% | 31.79\% | 27.25\% | 23.58\% |
| \$ per Switched access line | \$403.27 | \$439.70 | \$469.52 | \$519.63 | \$577.09 | \$633.35 | \$683.12 | \$691.64 | \$688.74 | \$768.02 |

Source: AT\&T CA ARMIS Form 43-01 as filed with CPUC; POTS lines in service derived from GO 133-C § 3.3 and 3.4 Trouble Reports per 100 Lines (TRPH) quarterly filings, 2010-2019. Switched access lines are average over each year.
46. $47 \mathrm{CFR} \S 32.5082$ Switched access revenue. (a) This account shall consist of federally and state tariffed charges assessed to interexchange carriers for access to local exchange facilities. (b) Subsidiary record categories shall be maintained in order that the company may separately report the amounts contained herein that relate to limited pay telephone, carrier common line, line termination, local switching, intercept, information, common transport and dedicated transport. The subsidiary records shall also separately show the federal and state tariffed charges. Such subsidiary record categories shall be reported as required by part 43 of this chapter.

> Even when confined to only those revenue sources directly attributable to legacy switched access line services, AT\&T California legacy access line-related revenues decreased by only about $53.4 \%$, significantly below the $76.4 \%$ drop in switched access line demand.

## AT\&T California's response to the rapidly eroding demand for legacy POTS services has not been to cut prices to retard such "cord-cutting," but instead to implement large rate increases so as to "harvest" as much revenue from the remaining POTS customers as long as they continue to retain their service.

The 2006 URF decision allowed California's large ILECs to detariff most of their retail services. ${ }^{47}$ As we discussed in Chapter 4A, as soon as detariffing of residential rates took effect in January 2009, AT\&T implemented a $26.3 \%$ rate increase for flat-rate residential service and a $27.7 \%$ increase for measured residential service. A succession of rate increases has continued ever since, and by the end of 2017 AT\&T California's rates for flat-rate and measured residential POTS access lines had risen to $152.6 \%$ and $325.4 \%$ of their pre-URF levels, respectively. This succession of rate increases for legacy POTS services is summarized in Chapter 4A, at Table 4A. 10 .

This succession of rate increases is consistent with and in support of a "harvesting" strategy aimed at maximizing revenues from existing customers until they ultimately discontinue their service, thus allowing A\&T to maintain revenues despite a massive drop-off in demand.

These regular and ongoing increases in legacy circuit-switched POTS access line rates are entirely consistent with the type of "harvesting strategy" discussed in Chapter 4. While putatively "subject to competition," these legacy services have been on the decline over the entire 2010-2017 period as customers replace them with AT\&T U-verse digital service bundles of voice, Internet access and video, or with competitor-provided wireline services, or with wireless. A "harvesting strategy" can be pursued where it is determined that, while some customers will discontinue their service in response to the steadily increasing prices, there are still a sufficient number of customers who confront few if any actual competitive alternatives and/or who simply retain their AT\&T legacy POTS service due to inertia - they simply haven't gotten around to seeking our any alternatives.

[^18]> AT\&T California's response to the erosion of the market for legacy POTS services has been to raise prices, cut back on investment and maintenance, and instead "harvest" those customers that remain on its network for as long as they continue to take their service.

A company will raise its prices only where such an action will result in an increase in profit overall, where the price elasticity of demand is sufficiently low such that, even though some small percentage of customers will discontinue their service, that loss of business will be less than the additional revenues that result from the price increase being paid by customers who remain. AT\&T's conduct with respect to these legacy POTS-type services demonstrates that the Company does not perceive them as being subject to so much competition that it must maintain its prices at competitive levels.

Additionally, even where some POTS customers are induced to seek an alternative service in response to a price increase, many will end up purchasing the substitute service from the same provider, AT\&T California and/or its wireless affiliate, AT\&T Mobility in this case. Indeed, one effect of raising the price of the legacy service is to reduce the differential in price between that service and the higher-priced digital service bundles, thus accelerating the migration of customers away from POTS. A companion strategy is to reduce the price of the substitute service - the AT\&T Internet + Phone bundle in this case - while simultaneously raising the price of the legacy service. AT\&T California has been doing just that, to the point where the price of its Internet + Phone bundles is often lower than the price of POTS, particularly when certain optional features and long distance services are included. Coupled with the deteriorating service quality associated with POTS services as discussed in Chapter 4A, the fact that AT\&T has been able to profitably implement this succession of annual rate increases for more than a decade since the implementation of $U R F$ raises serious questions as to the Commission's conclusion in $U R F$ that competition had developed to a point where continued regulatory protection of basic residential telephone service prices is no longer required or appropriate.

> The fact that AT\&T has been able to profitably implement a succession of large annual legacy services rate increases for more than a decade since the implementation of URF raises serious questions as to the Commission's conclusion in URF that competition had developed to a point where continued regulatory protection of basic residential telephone service prices is no longer required or appropriate.

## AT\&T California has continued its practice of disinvesting in its California local network infrastructure.

Because AT\&T California is a wholly-owned subsidiary of AT\&T Inc., it is the parent AT\&T Inc. that determines the amount of capital investment funds that will be available for local
infrastructure investment by its individual operating companies. AT\&T California dividends out some portion of, all or, as has been the case in seven of the last ten years, more than all of its net operating income to its parent. Table 7.5 below summarizes AT\&T California net income and dividend payments to its sole shareholder over the 2010-2019 period:

Table 7.5											
AT\&T CALIFORNIA$\begin{aligned} & \text { NET INCOME AND DIVIDEND PAYMENTS TO PARENT AT\&T INC. } \\ & 2010-2019 \\ & (\$ 000) \end{aligned}$											
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
AT\&T-CA Net Income	(2,318,705)	$(833,514)$	$(213,584)$	1,531,443	608,020	1,921,482	1,493,479	1,210,137	2,191,808	1,021,129	6,611,695
Dividend paid to AT\&T	1,355,722	0	0	0	1,354,158	1,527,615	1,861,782	1,507,216	2,149,652	1,282,762	11,038,907
Change in   Retained Earnings	-3,674,407	-833,514	-213,584	+1,531,443	-746,138	+393,867	-368,303	-297,079	+42,156	-261,633	-4,427,212

Cumulatively, over the full 10-year period, AT\&T California had total net after-tax income of \$6.1-billion, but paid out $\$ 11.0$-billion in dividends to its parent company, AT\&T Inc, thereby eroding the California company's capital base by roughly $\$ 4.4$-billion and impairing its ability to maintain and upgrade its aging infrastructure.

Over the past two years (2018-19), AT\&T California continued to disinvest from its network. The Company had total net after-tax income of $\$ 3.21$-billion, but paid out $\$ 3.42$-million in dividends to its parent company, AT\&T Inc -- i.e. it paid AT\&T dividends that were some $\$ 219.5$-million more than the California company had earned from its ongoing operations.

Thus, rather than reinvesting a portion of its net income back into its network, AT\&T California has been consistently disinvesting by paying out more in dividends to its sole stockholder than it generated as profits from its operations.

Between 2010 and 2019, AT\&T California paid dividends to AT\&T Inc. that exceeded its total net income over the period by roughly $\$ 4.43$-billion.

And this is not the only indication of a disinvestment policy on the part of AT\&T, as is further demonstrated in Table 7.6 below, AT\&T California has also been eroding its capital base by investing less in its infrastructure than its annual depreciation accruals and retirements:

AT\&T CALIFORNIA PATTERN OF INVESTMENT 2010-2019 (\$000)										
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
BOY Gross Telecom Plant in Service (TPIS)	38,012,545	38,820,045	41,239,852	41,885,833	41,171,577	40,334,511	40,592,685	40,459,982	36,561,579	37,037,552
Gross Plant Additions	1,294,281	2,823,661	1,026,656	1,349,988	1,003,950	692,124	840,929	1,126,575	1,163,824	1,147,067
Retirements	$(469,928)$	$(371,653)$	$(459,523)$	$(2,041,895)$	$(1,833,538)$	$(440,952)$	$(951,050)$	$(4,979,833)$	$(624,554)$	$(1,384,449)$
Adjustments	$(16,853)$	$(32,201)$	70,848	$(22,349)$	$(7,478)$	7,002	$(45,145)$	$(45,145)$	$(63,297)$	$(112,230)$
EOY Gross Telecom Plant in Service	38,820,045	41,239,852	41,885,833	41,171,577	40,334,511	40,592,685	40,459,982	36,561,579	37,037,552	36,687,940
Annual TPIS depreciation accruals (acct 6561)	2,269,324	2,317,862	2,263,393	1,635,691	1,179,213	980,435	894,384	948,481	766,007	765,580
Cumulative depreciation reserve	30,725,620	33,919,953	35,789,894	35,483,033	35,212,622	35,737,860	35,667,638	31,669,055	26,815,887	26,286,667
Net EOY TPIS	8,210,895	7,428,989	6,220,114	5,811,622	5,179,915	4,921,048	4,856,389	4,973,372	10,321,702	10,438,665
Source: AT\&T CA ARMIS 43-02 Reports, Table B-1, as filed annually with the CPUC										

Over the four-year period from 2016 through 2019, AT\&T California recorded \$7.94-billion in total retirements, negative $\$ 265.8$-million in Transfers/Adjustments, and \$3.37-billion of depreciation accruals. Gross Plant Additions made over that same 4-year period were only \$4.28billion, resulting in a plant erosion totaling at least $\$ 7.3$-billion. Gross Telecommunications Plant in Service carried on AT\&T California's USOA books decreased by roughly \$3.9-billion from the beginning of 2016 through the end of 2019. Notably, net plant over that same period appears to have increased by $\$ 5.5$-billion, from $\$ 4.9$-billion to $\$ 10.4$-billion.

In order to explore this seemingly anomalous condition, CD submitted the following data request to AT\&T California:

The amounts shown for Net EOY TPIS appear to show a substantial (\$5.3-billion) increase between 2017 and 2018, and an amount for 2019 that is similar in magnitude to that for 2018. Please provide the detailed accounting entries that produced this result, and provide a narrative explanation as to how Net TPIS could have increased by more than $\$ 5$-billion in a year when Gross Plant Additions were only $\$ 1.6$-billion, Retirements and Adjustments combined were slightly under \$700-million, and Depreciation Accruals were approximately \$766-million.

AT\&T California provided the following explanation in response:

For 2018 data and beyond, per the FCC's Decision 17-15, AT\&T eliminated MR accounting (used for regulatory purposes) in favor of GAAP accounting (used for financial reporting). ... In computing net investment (gross investment less accumulated depreciation reserve), the primary difference between MR and GAAP is associated with the accumulated depreciation reserve. The MR accumulated depreciation reserves were significantly higher than the GAAP accumulated depreciation reserves due the difference in depreciation rates and depreciation calculation methodology. ${ }^{48}$

AT\&T California's ARMIS Reports had, through 2017, been prepared in accordance with the FCC's Uniform System of Accounts (USOA) as specified in Part 32 of the FCC's Rules (47 CFR §32). (In its response AT\&T refers to this as "MR.") Although the CPUC has continued to require Price Cap ILECs (AT\&T California and Frontier California and its predecessors) to continue to submit annual ARMIS-type reports even though this requirement had been discontinued by the FCC after 2007, AT\&T California has apparently interpreted the FCC Decision 1715 referenced in its response as permitting it to substitute Generally Accepted Accounting Principles ("GAAP") for USOA accounting in the ARMIS-type reports submitted to the CPUC for 2018 and beyond. ETI does not offer an opinion as to the validity of AT\&T's interpretation. We would, however, make the following observations: It is customary practice for firms to identify any changes in accounting method(s) in notes to financial reports. The only reference to the use of GAAP accounting in AT\&T California's 2018 ARMIS filing appears in a footnote to the table entitled "Pole and Conduit Rental Calculation Information" that is included in the 2018 ARMIS Report 43-01, a location that would indicate that the change applies only to this specific Table. The footnote states that "Financial values reported on a GAAP basis beginning with 2018 data (per FCC decision 17-15)." We have been unable to find any similar notation as to the accounting change anywhere else in any of the Company's 2018 Reports including, in particular, the 43-02 Report that was the subject of the above-reference data request. No notation of the accounting change appears anywhere in the 2019 AT\&T California ARMIS Reports, not even in the counterpart of the Pole and Conduit Rental Table.

As AT\&T California explains in its Response, "the primary difference between MR [USOA] and GAAP is associated with the accumulated depreciation reserve. The MR [USOA] accumulated depreciation reserves were significantly higher than the GAAP accumulated depreciation reserves due the difference in depreciation rates and depreciation calculation methodology." What AT\&T California appears to have done is to, in effect, back-cast the accumulated depreciation reserves for 2018 and 2019 as if GAAP depreciation rules had been in effect prior to the 2018 accounting change.

[^19]We reach this conclusion based upon the following analysis: The Accumulated Depreciation Reserves for 2016 was $\$ 35.67$-billion, dropping to $\$ 31,69$-billion a year later (2017), roughly a $\$ 4$-billion decrease. In 2017, AT\&T California retired some $\$ 4.98$-billion in plant. Retirements reduce the accumulated depreciation reserve, in that case, by just under $\$ 5$-billion. In that same year, AT\&T California took depreciation accruals of \$948-million, which would have increased the accumulated depreciation reserve by that amount. The net of these two items - plant retirements and annual depreciation accruals, roughly corresponds to the \$4-billion decrease in year-over-year depreciation reserve between 2016 and 2017.

However, if we now look at the figures for 2017 and 2018, we see an entirely different situation. The accumulated depreciation reserve for 2018, per the AT\&T California ARMIS Report 43-02, was $\$ 26.8$-billion, a decrease of $\$ 4.85$-billion from the 2017 level. However, in 2018, AT\&T California retired only $\$ 624$-million in plant retirements and $\$ 766$-million in annual depreciation accruals. But for the change from USOA to GAAP accounting, the net effect of these two items should hve resulted in an increase in accumulated depreciation reserves of $\$ 142$-million, not a decrease of $\$ 4.85$-billion.


Table 7.6A below presents approximate results for 2018 and 2019 on a pro forma basis as if USOA accounting continued to be utilized in 2018 and 2019. These results are approximate, and almost certainly overstate net Telecommunications Plant in Service for both of those years. Depreciation rates (and hence annual depreciation accruals) under GAAP tend to be lower than those applicable under USOA. Thus, had USOA accounting rules continued to be utilized in 2018 and 2019, the annual depreciation accruals for those years would almost certainly have been higher, resulting in lower end-of-year Net TPIS for both years.

Table 7.6A
AT\&T CALIFORNIA
PATTERN OF INVESTMENT 2010-2019
APPROXIMATE PRO FORMA ADJUSTMENTS AS IF USOA ACCOUNTING RULES WERE STILL BEING USED FOR 2018 AND 2019
(\$000)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
BOY Gross Telecom Plant in Service (TPIS)	38,012,545	38,820,045	41,239,852	41,885,833	41,171,577	40,334,511	40,592,685	40,459,982	36,561,579	37,037,552
Gross Plant Additions	1,294,281	2,823,661	1,026,656	1,349,988	1,003,950	692,124	840,929	1,126,575	1,163,824	1,147,067
Retirements	$(469,928)$	$(371,653)$	$(459,523)$	$(2,041,895)$	$(1,833,538)$	$(440,952)$	$(951,050)$	$(4,979,833)$	$(624,554)$	$(1,384,449)$
Adjustments	$(16,853)$	$(32,201)$	70,848	$(22,349)$	$(7,478)$	7,002	$(45,145)$	$(45,145)$	$(63,297)$	$(112,230)$
EOY Gross Telecom Plant in Service	38,820,045	41,239,852	41,885,833	41,171,577	40,334,511	40,592,685	40,459,982	36,561,579	37,037,552	36,687,940
Annual TPIS depreciation accruals (acct 6561)	2,269,324	2,317,862	2,263,393	1,635,691	1,179,213	980,435	894,384	948,481	766,007	765,580
Cumulative depreciation reserve	30,725,620	33,919,953	35,789,894	35,483,033	35,212,622	35,737,860	35,667,638	31,669,055	31,810,508	31,191,639
Net EOY TPIS	8,210,895	7,428,989	6,220,114	5,811,622	5,179,915	4,921,048	4,856,389	4,973,372	5,227,044	5,496,301

Source: AT\&T CA ARMIS 43-02 Reports, Table B-1, as filed annually with the CPUC, as adjusted to conform to USOA accounting rules,

As noted, these adjusted USOA-type Net TPIS values for 2018 and 2019 likely overstate the amounts that would exist under strict USOA accounting. We do not have the means for estimating the 2018 and 2019 depreciation accruals that would have applied under USOA, so these approximations are as close as we can get with the information arailable. AT\&T California did make Gross Plant Additions for 2018 and 2019 totaling some $\$ 2.13$-billion net of adjustments. However, only a small fraction of that spending appears to have been directed to legacy POTS services.

Inter-affiliate transactions at non-arm's length transfer prices also contribute to the parent company's pattern of disinvestment in AT\&T California operations.

But even AT\&T California's nominally reported revenues, expenses and net income cannot by themselves provide a complete or accurate picture of the ILEC entity's financial performance. This is because of the extensive nature and amount of inter-affiliate transactions that take place on an ongoing basis between the AT\&T California ILEC entity and numerous other affiliates that are themselves, directly or indirectly, wholly owned by the parent company AT\&T Inc. These transactions involve both purchases made by the ILEC from other AT\&T affiliates as well as sales made by the ILEC to other AT\&T affiliates. Table 7.7 below provides a summary of
these transactions and their relationship to AT\&T California's overall revenues, operating expenses, and net income.


AT\&T's ILECs are organized into a number of mostly state-level operating subsidiaries, although some of the AT\&T ILEC entities provide service in several states. Other AT\&T "service company" entities provide a range of centralized services to the ILECs as well as to other non-ILEC AT\&T operations. The use of centralized services has a long history in the telecommunications industry, dating back to AT\&T Bell System days, when the AT\&T General Department provided a broad range of back-office services and Bell Laboratories provided centralized research and development for the entire AT\&T corporate family. In theory, the use of centralized services should produce scale and scope efficiencies that would then benefit all of the affiliates that utilize these services. In practice, this is not always the case. AT\&T, Verizon and their predecessors, in particular, have a long history of employing the use of centralized services organizations to extract profits from their operating telephone companies. In 2018 and 2019 alone, total AT\&T California operating expenses (excluding depreciation and amortization) were $\$ 7.16$-billion. $58 \%$ of these, some $\$ 4.15$-billion, were spent on services purchased from other AT\&T affiliates. In those same two years, AT\&T California's total operating revenues were $\$ 12.43$-billion, $16.17 \%$ of which, some $\$ 2.01$-billion were realized from sales to various other AT\&T affiliates.

With the exception of tariffed switched and special access services that are being purchased from AT\&T California by various other AT\&T affiliates, the specific transfer prices at which these transactions are recorded can hardly be viewed as being set on the basis of arm's length negotiations. Since both the seller and buyer in each instance are wholly-owned by the same parent company, the nominal transfer price has little or no effect upon the parent company's bottom line. However, if it is the parent company's goal to extract cash from the ILEC entity, setting an inflated transfer price for services the ILEC purchases from other AT\&T affiliates, or heavily discounting the prices that the ILEC charges for whatever (non-tariffed) services it sells to other AT\&T affiliates, can accomplish this as effectively as making a dividend payment to the parent, but with far less exposure as to the precise purpose of the policy. As Table 7.7 demonstrates, in six out of the last seven years, more than $50 \%$ of AT\&T California total operating expenses net of depreciation and amortization were paid over to other AT\&T affiliates for services rendered. Over the full 2010-2019 period, $\$ 26.0$-billion of the 58.3 -billion of total AT\&T California operating expenses (excluding depreciation and amortization) were spent on purchases of services from other AT\&T affiliates.

Table 7.7

## AT\&T CALIFORNIA

 AFFILIATE TRANSACTIONS WITH OTHER UNITS OF AT\&T INC. 2010-2019(\$000)

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
AT\&TCalifornia operating revenue	9,696,777	9,754,246	9,373.754	9,580,095	9,641,220	10,007,776	9,440,692	8,626,042	\$5,799,249	\$6,628,969
Sales to other AT\&T affiliate	2,978,741	2,942,621	1,566,044	1,700,570	1,645,297	1,864,210	1,967,601	1,681,965	977,436	1,032,465
Pct from sales to affiliates	30.72\%	30.17\%	16.71\%	17.75\%	17.07\%	18.63\%	20.84\%	19.50\%	16.85\%	15.58\%
AT\&T CA pretax OpEx excl depr/amort ${ }^{49}$	10,715,929	5,688,139	6,899,881	4,736,569	7,025,256	5,241,041	5,575,240	5,267,556	3,319,424	3,836,668
Services Purchased from AT\&T affiliates	2,122,027	2,458,684	2,712,380	2,657,560	2,884,788	3,185,779	3,135,299	2,762,898	1,891,939	2,260,675
Pct of total OpEx paid to affiliates	19.80\%	43.22\%	39.31\%	56.11\%	41.06\%	60.79\%	56.24\%	52.45\%	57.00\%	58.92\%
AT\&T-CA Net Income	$(2,318,705)$	$(833,514)$	$(213,584)$	1,531,443	608,020	1,921,482	1,493,479	1,210,137	2,191,808	1,021,129

Source: AT\&T CA ARMIS Form 43-02, Table I-2, Form 43-03, as filed annually with CPUC.

As we noted in our Phase 1 Report, that this type of manipulation may have occurred is hardly idle speculation. AT\&T and its post-1984 RBOC offspring have a long history of such transactions. In pre-NRF general rate cases, the CPUC would routinely include an examination of affiliate transactions between AT\&T California and other affiliates, and would in some cases adjust inter-affiliate transfer prices for regulatory purposes. ${ }^{50}$ The fact that the CPUC continues
49. Amounts shown are calculated as Total Operating Expenses (Form 43-03 Line 720) - Depreciation/ Amortization expenses (Form 43-03 Line 6560), which represents current cash operating expenses. The source data for this calculation is as follows:

	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Pre-tax OpEx	$13,010,515$	$8,006,001$	$9,163,274$	$6,356,472$	$8,216,812$	$6,212,753$	$6,469,624$	$6,206,258$	$4,085,431$	$4,602,248$
Peprec/Amort of	$2,294,586$	$2,317,862$	$2,263,393$	$1,619,903$	$1,191,556$	971,712	894,384	938,702	766,007	765,580
TPIS										

50. As far back as 1968, for example, the CPUC had initiated an investigation into the prices being charged by Western Electric, then the AT\&T manufacturing affiliate, for telecommunications equipment being purchased by (then) Pacific Telephone and Telegraph Company (PT\&T). Investigation into Practices and Contracts of PT\&T Co., Case No. 8858, Decision No. 76726, January 27, 1970, 1970Cal. PUC LEXIS 86, 70 CPUC 644.
to collect information on, and monitor, both sales to and purchases from affiliates on an ongoing basis underscores the legitimacy of this concern.

Persistent disinvestment, extensive affiliate transactions at self-serving transfer prices, extraordinarily large rate increases, and deteriorating service quality all point to "harvesting" as AT\&T California's overarching strategy for its legacy services and customers.

These extensive affiliate transactions, the directly measurable indicators of disinvestment depreciation accruals that exceed gross additions, payments of dividends to the parent company that exceed the nominally reported net income, and the persistent erosion of AT\&T California's Net Plant - and the deteriorating service quality overall - together compel certain conclusions as to AT\&T California's overall financial condition and investment policies:
(1) The succession of annual rate increases applicable to AT\&T California's legacy POTS services were not in any sense cost-driven or cost-based, and instead appear to have been driven by the company's pursuit of a harvesting strategy with respect to these services.
(2) Earnings of this magnitude confirm that AT\&T California's harvesting strategy is achieving the intended increases in profitability without the need for the infusion of large amounts of new capital investment in the company's local network infrastructure.
(3) Persistent disinvestment in the AT\&T California local network has been the principal source of the erosion in the net book value of the company's Telecommunications Plant in Service and the resulting escalation of the result of return on its remaining net investment.
(4) Persistent disinvestment, deterioration in service quality, and escalating prices for AT\&T California's basic residential services are not consistent with the level of competition that has been portrayed by AT\&T California and that the Commission has accepted as a basis for its adoption and continuation of the Uniform Regulatory Framework.

## AT\&T California investment in wireline circuit-switched voice services has continued to diminish over the 2018-2019 period.

Under the FCC's Uniform System of Accounts and associated financial reporting rules. large ILECs had been required to maintain a set of regulatory accounting records in a form established by the FCC, and to report various aspects of their capital investments among a number of functional categories. ${ }^{51}$ They had also been required to report, by category (USOA account),

[^20]annual Gross Additions, Retirements, annual and cumulative Depreciation Accruals, and gross and net telecommunications plant in service ("TPIS"). Much of this information was also being maintained at the individual wire center level. AT\&T California's ARMIS type submissions to the CPUC, specifically its Forms 43-02, indicate that, over the 2010 through 2017 period, AT\&T California made Gross Additions to its TPIS that were slightly over \$10-billion. ${ }^{52}$

In 2017, the FCC determined that "price cap ILECs" - those large carriers that are subject to FCC price cap rather than rate-of-return regulation - will no longer be required to maintain separate USOA accounting records after 2017. ${ }^{53}$ This study has benefitted greatly from the availability of ARMIS-type reporting by the two ILECs that are under examination here. Although the FCC no longer requires that AT\&T California and Frontier California maintain accounting records pursuant to the USOA as it had existed prior to the 2017 ruling, the FCC Order explicitly provides that "[n]othing in this Order precludes a state or regulatory agency, or another party as part of a contractual requirement, from requiring a carrier to maintain the Class A accounts or otherwise maintain the USOA. See, e.g., 17 CFR § 1770.11 (requiring Rural Utility Service borrowers to maintain Class A accounts)." ${ }^{54}$ And in her Statement Approving in Part and Concurring in Part, FCC Commissioner Mignon L. Clyburn remarked, "So to those carriers who advocate for decreased regulatory burdens, let me assure you: I am with you. However, the next time this Commission or a state commission asks for cost data, to support a rulemaking, investigate a complaint, or bring an enforcement action, I hope we do not hear protestations that the request is too burdensome because the data is not kept in the format that the FCC or state commission needs."

One of our specific Phase I Recommendations was that the important role that the Part 32 accounting data has played in this study makes a compelling case that this and the associated ARMIS-type annual reporting be maintained in California. AT\&T California has continued to submit annual ARMIS-type financial reports to this Commission based upon FCC Part 32 USOA

[^21]52. AT\&T California Forms 43-02 as submitted to the CPUC for 2010-2017.
53. I/M/O Comprehensive Review of the Part 32 Uniform System of Accounts, WC Docket No. 14-130; Jurisdictional Separations and Referral to the Federal-State Joint Board, CC Docket No. 80-286, Report and Order, FCC 17-15, Rel. February 24, 2017.
54. Id., at 7, fn. 51 .
accounting records although, as discussed above, the Company has apparently substituted GAAP reporting for Part 32 at least with respect to its balance sheet accounts..

Table 7.8 below provides a comparison of the distribution of gross plant additions among the various USOA account categories over the 2010-2017 Phase 1 period with those made during 2018-2019. AT\&T California Gross Telecommunications Plant in Service ("TPIS") Additions amounted to some $\$ 10.16$-billion over the Phase $12010-2017$ study period. $\$ 4.21$-billion, about $41.5 \%$, of these gross plant additions were directed toward central office switching and circuit equipment ("COE"); roughly the same amount (\$3.92-billion, about 38.6\%) was spent on Cable and Wire Assets - i.e., outside plant. However, that pattern saw a major shift over the Phase 2 2018-2019 study period. Total Gross Plant Additions for both years combined were only \$2.3billion. Only $\$ 201$-million ( $8.7 \%$ ) was directed toward COE, whereas the outside plant Cable \& Wire component represented some $77.6 \%$ of total Gross Additions, some \$1.79-billion.

Over the 2010-2017 period, the two largest areas of investment were in Account 2212 Digital Electronic Switching (\$1.48-billion) and in Account 2232 - Circuit Equipment \$2.69billion). Account 2212 is further broken down into two subaccounts - Account 2212.1 - Circuit Switching, and Account 2212.2 - Packet Switching. The majority of new Digital Switching investment over the 2010-2017 period was for Packet Switches, although in 2018-2019 the Company spent more on circuit switching equipment than on packet switching. Notably, Packet Switches, which are used to support VoIP, Internet access and various other advanced services, are not used in the provision of basic local POTS services. Account 2232 (Circuit Equipment) is defined as including, principally, "equipment which is used to reduce the number of physical pairs otherwise required to serve a given number of subscribers by utilizing carrier systems, concentration stages or combinations of both. It shall include equipment that provides for simultaneous use of a number of interoffice channels on a single transmission path. ...

Account 2232 is also broken down into two subaccounts - subaccount 2232.1 includes Electronic Circuit Equipment; Subaccount 2232.2 includes Optical Circuit Equipment. Although the data suggest that the bulk of AT\&T's investment in circuit equipment has been on the electronic, rather than optical, side as noted in Table 7.8, that is not likely the case. 47 CFR §32.2232(d) provides that "Circuit equipment that converts electronic signals to optical signals or optical signals to electronic signals shall be categorized as electronic - shall be assigned to subaccount 2232.1-Electronic Circuit Equipment." Given that AT\&T has been engaged in a major fiber optic upgrade both in feeder and in many distribution routes, it is highly likely that the bulk of Subacount 2232.2 gross additions have involved circuit equipment that converts between electronic and optical signals. And although this equipment is undoubtedly being used by AT\&T to provide circuit-switched legacy POTS-type services, the drivers for these upgrades has clearly been the company's pursuit of nonregulated broadband and other advanced services markets.

Table 7.8
AT\&T CALIFORNIA
DISTRIBUTION OF GROSS PLANT ADDITIONS 2010-2017 COMPARED WITH 2018-2019

Account	Account description	2010-2017		2018-2019	
		Gross Adds	Pct of Total	Gross Adds	Pct of Total
	TPIS - General Support Assets	-		-	
2111	Land	171	0.00\%	800	0.03\%
2112	Motor vehicles	240,745	2.37\%	4,289	0.19\%
2113	Aircraft	-	0.00\%	-	0.00\%
2114	Tools and other work equipment	93,597	0.92\%	13,662	0.59\%
2121	Buildings	594,211	5.85\%	129,266	5.59\%
2122	Furniture	443	0.00\%	-	0.00\%
2123	Office equipment	1,745	0.02\%	34	0.00\%
2124	General purpose computers	43,434	0.43\%	133	0.01\%
	TOTALS -- General Support Assets	974,346	9.59\%	148,184	6.41\%
	TPIS - Central Office Assets	-		-	
2211	Non-digital switching	214	0.00\%	9	0.00\%
2212.1	Circuit Switching	148,894	1.47\%	49,935	2.16\%
2212.2	Packet Switching	1,335,116	13.14\%	35,826	1.55\%
2220	Operator Systems	1	0.00\%	-	0.00\%
2231	Radio systems	31,664	0.31\%	13,149	0.57\%
2232.1	Electronic circuit	2,695,654	26.54\%	102,072	4.42\%
2232.2	Optical circuit	1,024	0.01\%	99	0.00\%
	TOTALS -- Central Office Equipment	4,212,567	41.47\%	201,090	8.70\%
TPIS - Information Origination/Termination Assets		-		-	
2311	Station apparatus	-	0.00\%	-	0.00\%
2321	Customer premises wiring	-	0.00\%	-	0.00\%
2341	Large private branch exchanges	9,406	0.09\%	-	0.00\%
2351	Public telephone terminal equipment	53	0.00\%	-	0.00\%
2362	Other terminal equipment	893,336	8.79\%	154,561	6.69\%
	TOTALS -- Information Orig/Termination Assets	902,795	8.89\%	154,561	6.69\%
	TPIS - Cable and Wire Assets	-		-	
2411	Poles	495,031	4.87\%	188,569	8.16\%
2421	Aerial cable	840,574	8.27\%	378,053	16.36\%
2422	Underground cable	1,572,375	15.48\%	603,621	26.12\%
2423	Buried cable	364,234	3.59\%	260,928	11.29\%
2424	Submarine and deep sea cable	14	0.00\%	-	0.00\%
2426	Intrabuilding network cable	17,397	0.17\%	43,081	1.86\%
2431	Aerial wire	11	0.00\%	-	0.00\%
2441	Conduit systems	631,674	6.22\%	318,206	13.77\%
	TOTALS -- Cable and Wire Assets	3,921,310	38.60\%	1,792,458	77.57\%
-	TPIS Amortizable Assets	-		-	
2681	Capital leases	-	0.00\%	-	0.00\%
2682	Leasehold Improvements	52,439	0.52\%	2,077	0.09\%
2690.1	Network Software	71,203	0.70\%	12,521	0.54\%
2690.2	General purpose computer software	23,504	0.23\%	-	0.00\%
TOTALS -- Amortizable Assets		147,146	1.45\%	14,598	0.63\%
	TOTAL TPIS Gross Plant Additions	10,158,164	100.00\%	2,310,891	100.00\%
Source:	\&T California Responses to CD DR-03A, DR 11-A.				

ECDNDMICS AND
TECHNDLDGY, INC.


Table 7.5 above showed that AT\&T California has been steadily disinvesting in its local network. AT\&T-California has been consistently paying dividends to its parent AT\&T Inc. that exceed its net earnings. Between retirements and annual depreciation accruals, there are more assets being written off and depreciated than are being acquired. Depreciation is an operating expense, but since it does not involve any immediate cash outlay (as is the case for most other types of operating expenses), depreciation provides, in effect, a source of cash that can be used for plant upgrades and replacements. Here, however, AT\&T California's Gross Additions are consistently falling below its ongoing depreciation accruals.

## Investments at individual wire centers

AT\&T was asked to, and did, provide certain investment- and asset-related data at the individual wire center level. This included Gross Additions (by account), Retirements, and Operating Expenses including annual depreciation charges. Wire centers vary in size from a few hundred to tens of thousands of access lines. In order to compare AT\&T's investment practices across all of its wire centers, we used the switched access lines in service as of January 2019 for each of AT\&T California's wire centers, representing the mid-point of the Phase 2 study period, which runs from January 2018 through and including December 2019. We compared total Gross Additions made over the two-year period with the January 2019 number of lines in service.

Table 7.9 below provides a summary by USOA account of total 2018-2019 Gross Additions. These figures were compiled from the account- and wire center-level data provided by AT\&T California in response to CD data request 11-A-08. They do not appear to correspond precisely with the Form 43-02 ARMIS reports. The Form 43-02 submissions indicated that for 2018 and 2019 combined, AT\&T California had Gross Additions of roughly \$2.3-billion. However, from the AT\&T California response to CD data request 11-A-08, only about $\$ 1.95$-billion in Gross Additions (including transfers from Plant Under Construction) for the same period have been identified.

Tables 7.10 through 7.12 below provide the total and per-access line Gross Additions made over the 2018-2019 Phase 2 study period, based upon January 2019 access lines in service. Table 7.10 provides data for individual wire centers sorted alphabetically by CLLI code. Tables 7.11 and 7.12 provide the same data sorted by total Gross Additions for each wire center (Table 7.11) and by the average Gross Addition per January 2019 switched access line in service (Table 7.12). There is, as it turns out, an extraordinarily wide variation in the per-access line investment across the full scope of AT\&T California's 615 wire centers, ranging from $\$ 18.46$ for the Bradley wire center (BRDLCA90) to $\$ 51,653$ in the Parkway wire center (SNRFCA11) per average access line (see Table 7.12 below). Fourteen AT\&T California wire centers show
negative Gross Additions for 2018-2019, which is likely due to accounting adjustments. Many individual wire centers show negative Gross Additions for one or more USOA accounts.

Table 7.9AT\&T CALIFORNIAGROSS PLANT ADDITIONS$2018-2019$				
	Accou nt	Description		2018-2019 Gross Addition
	2003	Telecommunications plant under construction		$(49,196,524)$
	2211	Non-digital COE		282,463
	2212.1	COE - Circuit Switching		52,584,580
C	2212.2	COE - Packet Switching		31,044,715
E	2231	Radio systems		7,634,061
	2232.1	Circuit Equipment - Electronic		64,113,984
	2232.2	Circuit Equipment - Optical		1,109,626
$\begin{aligned} & \mathrm{O} \\ & \mathrm{~S} \\ & \mathrm{P} \end{aligned}$	2411	Poles		188,569,073
	2421	Aerial Cable		378,052,487
	2422	Underground Cable		603,621,152
	2423	Buried Cable		260,927,836
	2426	Intra-building Network Cable		43,080,835
	2441	Conduit Systems		318,205,818
	TOTAL (incl. transfers from Plant Under Construction)			1,949,226,650
	Central Office Equipment -- Total		8.04\%	156,769,449
	Outside Plant -- Total		91.96\%	1,792,457,201

The AT\&T accounting data upon which these tables are based provides, in addition to specific figures for each of its roughly 615 wire centers, additional amounts that are not wire center-specific. Approximately 97 entries are not associates with specific wire centers. These entries combined represent a negative $\$ 156.46$-million of Gross Additions.


\$


ECONOMICS AND
(1)


ECONOMICS AND









































ECONOMICS AND





















ECONOMICS AND





ECONOMICS AND



## GO 133-D §9.7 Alternative Investments

As we discussed in our Phase 1 Report, in August 2016, the Commission issued a revised GO 133-D that imposes financial penalties upon ILECs that persistently fail to meet minimal POTS service quality standards. GO-133-D §§9.3, 9.4 and 9.5 provide for escalating daily fines where a carrier's failure to meet the required service standards persists for an extended period of time. ${ }^{55}$ A total of \$9.1-million in fines was assessed against AT\&T California since this provision became effective. ${ }^{56} \S 9.7$ allows offending carriers to submit an "Alternative Proposal for Mandatory Corrective Action" whereby carriers can avoid the fine by agreeing to invest an amount of at least double the fine if such an investment will be effective in remedying the service problem for which the fine had been imposed. This "alternative" opportunity is initiated by the carrier by submitting "a request to suspend the fine." Under this provision,
... carriers may propose, in their annual fine filing, to invest no less than twice the amount of their annual fine in a project (s) which improves service quality in a measurable way within 2 years. The proposal must demonstrate that 1 ) twice the amount of the fine is being spent, 2) the project (s) is an incremental expenditure with supporting financials (e.g. expenditure is in excess of the existing construction budget and/or staffing base), 3) the project (s) is designed to address a service quality deficiency and, 4) upon the project $(\mathrm{s})$ completion, the carrier shall demonstrate the results for the purpose proposed. ${ }^{57}$

Carriers can avoid fines either by meeting the GO-133-D §3 performance standards or by investing in network upgrades that will result in improved service quality overall. These investments must, however, be directed specifically at services that fall within the scope of GO 133-D, i.e., legacy circuit-switched voice lines. AT\&T California has sought approval of alternative proposals for mandatory corrective action under $\S 9.7$ in lieu of paying the assessed fines in 2017, 2018 and 2019, and the Commission has approved all of these requests. CD has been tracking the effectiveness of such "alternative investments" in improving service quality, but most of these projects have been completed so recently (or are still ongoing) that no conclusion as to their effectiveness in improving service quality can be drawn at this time.
55. D.16-08-021 (R.11-12-001), Adopted Aug. 18, 2016; Effective Aug. 18, 2016; Except Section 9 on fines, which is effective Jan. 1, 2017.
56. Resolution T-17625, issued November 8, 2018; Resolution T-17655, issued June 3, 2019; Resolution T-17721, issued December 17, 2020.
57. GO 133-D, §9.7.

Table 7.13 below provides a summary of the specific alternative investments that have been made by AT\&T California during 2018-2019. A total of 100 AT\&T California wire centers have been the recipients of these "alternative investments" over this two-year period. Based upon January 2019 access line counts, these wire centers served 481,441 access lines, representing $25.1 \%$ of the total $1,915,900$ switched access lines that were being served by AT\&T California at that time.

Table 7.14 provides the 2018-2019 GO 133-D $\S 9.7$ amounts together with 2018-2019 service quality metrics for each of the same 100 wire centers using five service quality metrics as presented earlier in Table 4A.6. The five metrics are (1) Out-of-Service per 100 Access Lines per month; (2) Out-of-Service over 24-hours per 100 Access Lines per month; (3) Percent Out-of-Service Conditions Cleared Within 24 Hours; (4) Days Required to Clear $90 \%$ of Out-ofService Conditions; and (5) and Average Out-of-Service Duration (in minutes). We have sorted the table by the Percent Out-of-Service Conditions Cleared Within 24 Hours. GO 133-D requires that $90 \%$ of all Out-of-Service conditions be cleared within 24 hours, a condition that AT\&T California has never come even close to achieving.

ECONOMICS AND


|  |  | Table 7.13 GO 133-D §9.7 "ALTERNATIVE PROPOSED INVESTMENTS" 2018-2019 (continued) |
| :---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| GO 133-D §9.7 |  |  |


|  |  | Table 7.13 GO 133-D §9.7 "ALTERNATIVE PROPOSED INVESTMENTS" 2018-2019 (continued) |
| :---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| GO 133-D §9.7 |  |  |


Table 7.14											
2018-2019 SERVICE QUALITY METRICS IN WIRE CENTERS RECEIVING GO 133-D §9.7 "ALTERNATIVE PROPOSED INVESTMENTS" (Sorted by Percent Cleared within 24 Hours)											
wc	CLLI	WC Name	County	Jan 2019   Access   Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	OOS per 100 ALs per month	OOS>24 per 100 ALs per month	Pct Cleared w/in 24 hours (unadj)	$\begin{aligned} & \text { \# days to clear } \\ & 90 \% \text { OOS } \\ & \text { (unadj) } \end{aligned}$	Avg OOS Duratn (mins)
707315	PNARCA11	Point Arena	Mendocino	597	26,725	83,477	1.980	1.647	16.84\%	12.384	7611
707288	ELK CA11	Elk	Mendocino	211	8,060	8,477	2.919	2.387	18.24\%	11.566	6991
530466	LSTNCA11	Lewiston	Trinity	508	4,855	14,930	2.125	1.713	19.38\%	11.266	6539
707280	BNVLCA11	Boonville	Mendocino	645	12,118	121,299	3.165	2.401	24.14\%	11.625	6784
530490	PLVLCA12	Placerville Niagara	El Dorado	2,240	5,875	220,920	3.597	2.726	24.20\%	14.327	8389
530485	ORVLCA12	Oroville East	Butte	1,522	11,418	139,512	4.615	3.473	24.73\%	7.371	5200
530457	GRTWCA11	Georgetown	El Dorado	1,339	40,908	100,410	3.634	2.695	25.83\%	10.774	6103
530528	CNVYCA11	Central Valley	Shasta	1,528	23,261	47,627	3.063	2.188	28.55\%	11.247	6530
530441	CTWDCA11	Cottonwood	Tehama	2,138	45,885	116,846	4.168	2.899	30.43\%	10.798	6043
707297	HLBGCA11	Healdsburg	Sonoma	2,672	16,075	162,508	2.146	1.487	30.70\%	12.027	6738
530489	PLVLCA11	Placerville Main	El Dorado	7,102	78,185	445,092	3.304	2.255	31.75\%	11.220	6208
530475	NVCYCA11	Nevada City	Nevada	3,415	29,760	175,423	2.253	1.533	31.94\%	10.568	6008
209184	KNFYCA11	Knights Ferry	Stanislaus	141	4,871	7,234	1.307	0.881	32.56\%	11.337	5356
619700	ALPICA12	Alpine	San Diego	1,624	47,280	118,847	2.653	1.780	32.88\%	8.889	4594
619744	IMBHCA11	Imperial Beach	San Diego	2,049	12,190	99,724	1.205	0.808	32.89\%	8.658	4835
530504	SGSPCA11	Shingle Springs	El Dorado	3,431	34,518	268,615	2.457	1.643	33.15\%	9.754	5323
559213	PTVLCA11	Porterville	Tulare	4,993	12,698	215,603	1.704	1.129	33.72\%	5.636	3738
707287	CTTICA12	Cotati	Sonoma	1,983	11,393	71,216	0.934	0.615	34.15\%	10.814	6074
619723	CRNDCA11	Coronado	San Diego	1,724	10,589	13,839	0.632	0.415	34.34\%	8.908	4732
707292	FTBRCA02	Fort Bragg	Mendocino	3,227	49,006	571,959	1.683	1.104	34.38\%	10.582	5569
626658	SNGBCA01	San Gabriel	Los Angeles	4,610	19,071	235,554	1.066	0.698	34.53\%	7.009	4213
858750	LAJLCA11	La Jolla Girard	San Diego	3,647	16,281	63,981	0.847	0.553	34.67\%	8.289	4915
559228	THRRCA11	Three Rivers	Tulare	609	59,250	99,547	4.800	3.132	34.74\%	4.526	3252
650024	LSATCA11	Los Altos	Santa Clara	4,386	45,785	236,071	1.791	1.165	34.95\%	7.699	4780
530459	GRVYCA01	Grass Valley	Nevada	7,879	28,787	284,966	2.152	1.396	35.11\%	9.388	5271
619718	CHVSCA11	Chula Vista Third Avenue	San Diego	3,894	8,957	165,333	1.307	0.840	35.75\%	7.363	4346
209234	VYSPCA11	Valley Springs	Calaveras	1,100	14,574	92,954	2.855	1.826	36.04\%	8.161	4479
650016	HmbaCA12	Half Moon Bay	San Mateo	2,349	37,312	91,019	1.016	0.643	36.74\%	8.396	4429
530531	RDNGCA11	Redding Enterpr	Shasta	3,279	18,119	70,508	1.331	0.841	36.87\%	8.762	5025
530535	DLRYCA11	Wildwood	Nevada	1,442	13,769	76,597	1.920	1.211	36.92\%	10.608	5521
530438	CHICCA01	Chico Main	Butte	10,221	6,955	287,579	1.386	0.874	36.92\%	6.730	4497
619719	CHVSCA12	Chula Vista Apache	San Diego	2,258	5,956	44,012	0.575	0.362	36.94\%	7.266	4589
408130	SNJSCA12	San Jose Dial Way	Santa Clara	13,069	36,755	282,004	1.215	0.763	37.23\%	7.501	4516
626611	ELMNCA01	El Monte	Los Angeles	9,210	7,436	260,083	1.346	0.840	37.59\%	7.765	4360
619752	LAMSCA01	La Mesa	San Diego	5,791	29,460	338,207	1.118	0.697	37.68\%	6.795	4025
619729	ELCJCA11	El Cajon	San Diego	4,004	4,702	326,642	1.303	0.811	37.72\%	6.534	3873
707317	RIDECA11	Rio Dell	Humboldt	238	18,122	32,097	0.790	0.491	37.78\%	4.104	2423

3



It is useful to put these expenditures in context. Table 7.15 below summarizes three categories of AT\&T California expenditures during the 2018-2019 period.

Table 7.15		
COMPARISON AMONG	LIFORNIA T INVESTMEN -2019	CATEGORIES
Expenditure category	2018-2019   Amount	Percent of Total Gross Plant Additions
Total Gross Plant Additions (per Form 43-02)	2,310,891,000	100.000\%
Rehabilitation expenditures (per AT\&T-CA Response to DR 11-A-17/18	107,211,728	4.553\%
GO 133-D §9.7 "Alternative Investments" in lieu of fines	2,725,499	0.118\%

As is apparent, the amounts that AT\&T California has committed to spend on GO 133-D §9.7 "Alternative Investments" in lieu of paying fines represents a de minimis fraction of the Company's total gross infrastructure investments - slightly over one-tenth of one percent. Of perhaps greater importance, the minuscule extent of such "alternative" investment outlays when compared with even the identified plant rehabilitation costs begs the question as to whether these expenditures would have been made anyway, irrespective of the GO 133-D $\S 9.7$ opportunity to make investments is legacy service infrastructure that would ostensibly not have been made in the absence of the GO 133-D §9.7 offer.

Table 7.16 provides a summary of AT\&T California "rehabilitation" expenditures for all of its wire centers over the 2018-2019 period as provided in response to DRs 11-A-17/18. Over this two-year period, AT\&T California expended some \$107.2-million across four categories of plant rehabilitation - AT\&T Field Operations (AFO) maintenance projects (\$28.0-million), Construction \& Engineering (C\&E) capital projects (\$2.0-million), Outside Plant (OSP) rehabilitation (\$20.4-million), and other Plant rehabilitation (\$56.7-million).

Inasmuch as AT\&T California has consistently and persistently failed to meet the minimum GO $133-\mathrm{C} / \mathrm{D}$ service quality standards, it is not entirely clear how the specific wire centers for
which the Company has elected to make an investment in lieu of a fine were selected. Table 7.17 below compares the amounts expended specifically on GO 133-D $\S 9.7$ "alternative investments" with the corresponding amounts expended for each wire centers on the 2018-2019 "rehabilitation" projects. Table 7.18 presents the same data as in Table 7.17, sorted by total rehabilitation expenditures for each wire center, from largest to smallest. several key service quality performance metrics for each AT\&T wire center. Finally, Table 7.19 provides the same rehabilitation expenditures by wire center as in Table 7.14, but includes all AT\&T California wire centers, not just those for which GO 133-D §9.7 "Alternative Investments" had been committed.

ECONOMICS AND








$\begin{array}{cll}\text { WC } & \text { CLLI } & \text { WC Name } \\ 661360 & \text { BKFDCA15 } & \text { Bakersfield Mettler } \\ \text { 661361 } & \text { BKFDCA17 } & \text { Bakersfield West Rosedale }\end{array}$
Bakersfield Mettler
Bakersfield West Rosedale
Bakersfield Nomad
Berkeley Bane
Bulder Creek
Blue Lake
Blairsden
Benicia
Bangor
Bangor
Ben Lomond
Buena Park
Boonville
Boonvilie
Burbank Palm
Burbank Thornton
Bradley
Brea
Burlingame
Brawley
Bishop Ranch
Butte City
Bethel Island
Bear Valley
Bear Vlly Spring

Campo
Chico Main
Chualar
Chula Vista Third Avenue
Chula Vista Apache
Chowchilla
Culver City$\stackrel{\frac{0}{x}}{\frac{0}{x}}$Camp NelsonCamp NelsononConcord



```
 N/\mp@code{Nam}
```




```
loc
\mathscr{Na}
```









$\frac{5}{2}$




wC	CLLI	wC Name
707289	EURKCA01	Eureka
831108	FETNCA11	Felton
80735	FLBKCA12	Fallloock

$\begin{array}{lll}831108 & \text { FETNCA11 } & \text { Felton } \\ 760735 & \text { FLBKCA12 } & \text { Fallbrook }\end{array}$
805370 FLMRCA11 Fillmore
916453 FLSMCA12 Folsom Nimbus
916454 FLSMCA13 Folsom El Dorado Hills
909736 FNTACA11 Fontana
Fairfield





Fresno West Highway City

 Fort Bragg
Fortuna
Five Points

$\frac{\stackrel{0}{0}}{\frac{0}{0}}$



तo
$\frac{0}{0}$
$\frac{0}{0}$

0
0
0
0
0
0
0
0
0
0
0
0

$\circ$
0
$\frac{0}{0}$
$\frac{0}{\omega}$
$\vdots$

Geyersville

0
N
O

 Hughson
Healdsburg

$\bar{\sigma}$
$\vdots$
$\vdots$
$\vdots$
$\vdots$










简然皆㐓资 춧 춧읏等莒品品
둔 $\stackrel{\ddagger}{\circ}$ 웅 o．흥 $\stackrel{\circ}{\circ}$ 운等导筞符导荡 씅导答答坡志 웅

ECONOMICS AND


```
\M~NNOM
```



```
*)
lol
```




```
~
```


WC Name
Hollister
Holtville
Hollywood
Half Moon Bay
Hamilton City
Homewood
Hanford
Hannford
Huntington Park










County
Napa
Los Ange
Lake
San Dieg
Plumas
Placer
Los Angeles
San Joaquin
Humboldt
Humboldt
Placer
Los Angeles
Marin
Larin
os Angeles
os Angeles
os Angeles

Los Angeles
Los Angeles
Los Angeles
Los Angeles
Los Angeles
Los Angeles
Los Angeles















$\qquad$



$\square$ oco


$\stackrel{\square}{\text { a }}$

wc	CLLI	WC Name
707301	LKBRCA11	Lake Berryessa
661405	LKLACA11	Lake Los Angeles
707302	LKPTCA02	Lakeport
619751	LKSDCA12	Lakeside
530471	LLTNCA11	Loyalton
916467	LNCLCA11	Lincoln
661374	LNVYCA11	Leona Valley
209191	LODICA01	Lodi
707303	Loltca11	Lolita
916470	LomsCal1	Loomis
310622	LOMTCA11	Lomita
415023	LRKSCA11	Larkspur Corte Madera
213624	LSANCA02	Madison 02 MO
213625	LSANCA03	Madison 03 MA
323626	LSANCA05	LSAN Pleasant
213627	LSANCA06	Union
310628	LSANCA07	LSAN Airport
323629	LSANCA08	LSAN Merrose
213630	LSANCA09	Richmond
323631	LSANCA10	LSAN Webster
213632	LSANCA11	Rampart
323633	LSANCA12	Normandy
323634	LSANCA13	LSAN Plymouth
323635	LSANCA14	LSAN Adams
323636	LSANCA15	LSAN Axminster
323638	LSANCA23	LSAN Capitol
323640	LSANCA29	LSAN Sunset
323641	LSANCA34	LSAN Angeles
323642	LSANCA35	LSAN Montebello
323643	LSANCA38	LSAN Republic
323644	LSANCA56	LSAN Clinton
650024	LSATCA11	Los Altos
209193	LSBNCA12	Los Banos
530469	LSMLCA11	Los Molinos
530466	LSTNCA11	Lewiston
661375	LTRKCA11	Little Rock
925025	LVMRCA11	Livermore
530468	LvokCA11	Live Oak
707304	LWLKCA11	Lower Lake
559194	MADRCA11	Madera Main
559243	MADRCA12	Madera Bonnadelli
831113	MARNCA11	Marina
209199	MDSTCA02	Modesto Main
209200	mDSTCA03	Modesto Kellog South Ceres
209201	MDSTCA04	Modesto Kingswood Curtis Salida
209248	MDSTCA05	Modesto Tally
209249	MDSTCA52	Modesto Davis
707306	MDTWCA11	Middletown
209202	MKHLCA12	Mokelumne Hill
707307	MKVLCA11	McKinleyville
650026	MLBRCA11	Milllbrae
408114	MLPSCA11	Milipitas












$\qquad$










「
ভ
Z
Z






 M
0
0
0
0
0












## $\stackrel{8}{8}$ <br> 















Monterey
Monterey
Monterey












San Francisco
San Francisco
San Francisco






WC Name
Simi
S J Capistrano
Stockton Main
Stockton Granite

Soledad
Solemint
Solemint
Salinas Main
Hickory Salinas
㐫
Silverado
Smartsville
San Andreas
Bush
Bristol
Santa Ana West SNAN Bolsa
Santa Ana
San Ardo
an Bruno
San Carlos
Santa Cruz
Santa Cruz Capitola
SNDG C Street
SNDG University
SNDG C Street
SNDG University
SNDG Linda Vista SNDG Linda Vis
SNDG Saipan SNDG 37th Street SNDG College SNDG Tennyson
SNDG Regents
 SF Bush Pine
SF Market McCoppin SF Market McCoppin



 증
O
운
0 San Geronimo
San Juan Baustista
San Jose Main









```
*)
```




```
&~%~O
```




## 恡 <br> 






Carrol Sunnyvale Mathilda Sunneyvale Sonoma Mission Sout Pasadena Mission
 $\qquad$ Sausalito Larkspur South Tahoe Tamarack South Tahoe Meyers Apache Stinson Beach
Sutter Creek Sutter Creek Suisun City 을
을

은 Techachapi Three Rivers Thornton Templeton | 응 |
| :--- |
| 인 |
| 1 |

 ㄴ
읃
은
능
 NJSCA21


「 SNPDCA01 SNRACA13















둔	$\bar{y}$



N
$\underset{y}{c}$






侖 m䒘 웅충응




$\stackrel{\AA}{\stackrel{\circ}{4}} \stackrel{\infty}{\infty}$






		COMPARI	N OF GO 133-D	§9.7 "ALTER   REHAB	Table 7.17   \&T CALIFORNIA   RNATIVE PROPOS EXPENDITURES 2018-2019	INVESTMEN	AND TOTAL	
	WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
	661410	ACTNCA11	Acton	Los Angeles	743	-	122,841	0.00\%
	661351	AGDLCA11	Agua Dulce	Los Angeles	456	-	311,170	0.00\%
	818600	AGORCA11	Agoura	Los Angeles	4858	-	951,226	0.00\%
	510001	ALBYCA11	Albany Solano	Alameda	6236	21,550	92,458	23.31\%
	530425	ALGHCA11	Alleghaney	Sierra	47	-	15,482	0.00\%
	626601	ALHBCA01	Alhambra	Los Angeles	8889	-	232,806	0.00\%
	$510002$	ALMDCA11	Alameda Central	Alameda	$6355$	5,120	185,433	2.76\%
$\begin{aligned} & \omega \\ & \pm \end{aligned}$	619700	ALPICA12	Alpine	San Diego	1624	47,280	118,847	39.78\%
	209150	ANCMCA01	Angels Camp	Calaveras	809	-	100,528	0.00\%
	707275	ANGWCA11	Angwin	Napa	591	-	36,041	0.00\%
	714701	ANHMCA01	Anaheim Lemon	Orange	7849	-	321,767	0.00\%
	714702	ANHMCA11	Anaheim Cypress	Orange	7686	-	719,465	0.00\%
	714703	ANHMCA12	Anaheim La Palmi	Orange	1791	-	194,078	0.00\%
	714811	ANHMCA17	ANHM Hills	Orange	848	-	52,121	0.00\%
$\stackrel{1\|11\| 1\|\mid 1]}{ }$	707322	ANNPCA11	Annapolis	Sonoma	71	-	12,067	0.00\%
11.1111	925003	ANTCCA11	Antioch	Contra Costa	5049	-	383,040	0.00\%
	831100	APTSCA12	Aptos	Santa Cruz	2864	6,466	76,438	8.46\%
Tm	$626602$	ARCDCA11	Arcadia	Los Angeles	4800	-	168,770	0.00\%
$\square 0$	707276	ARCTCA11	Arcata	Humboldt	$1835$	-	$89,453$	0.00\%
I	805352	ARGRCA12	Arroyo Grande	San Luis Obispo	$3827$	-	$389,592$	0.00\%
B Z	831144	ARMSCA11	Aromas	San Benito	446	-	$52,895$	0.00\%
$\bigcirc$	209151	ARNLCA11	Arnold	Calaveras	1936	-	197,594	0.00\%
$\bigcirc$	530427	ARSNCA11	Anderson	Shasta	1747	-	79,134	0.00\%
$\bigcirc \leq$	951704	ARTNCA11	Arlington	Riverside	5896	-	477,090	0.00\%
円口	661353	ARVNCA11	Arvin	Kern	736	-	$146,034$	0.00\%
$\prec 0$	559152	ASMTCA11	Sequoia Ash Mtn	Fresno	82	-	54,554	0.00\%



wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D \$0.7
310609	CMTNCA01	Compton	Los Angeles	9969	51,395	1,171,795	4.39\%
925009	CNCRCA01	Concord	Contra Costa	8980	-	332,450	0.00\%
818610	CNPKCA01	Canoga Park	Los Angeles	13344	16,043	1,356,631	1.18\%
530528	CNVYCA11	Central Valley	Shasta	1528	23,261	47,627	48.84\%
707284	CODLCA11	Cloverdale	Sonoma	832	-	130,963	0.00\%
650010	COLACA01	Colma Daly City	San Mateo	5878	39,715	159,553	24.89\%
707286	CORDCA12	Cordelia	Solano	1340	-	51,378	0.00\%
951721	CORNCA11	Corona	Riverside	10738	12,733	1,015,536	1.25\%
909720	COTNCA11	Colton	San Bernandino	3205	-	304,731	0.00\%
510011	CRCTCA02	Crockett	Contra Costa	289	-	1,666	0.00\%
949722	CRDMCA11	Corona Del Mar	Orange	6350	-	132,880	0.00\%
760716	CRLSCA11	Carlsbad Harding	San Diego	2206	-	98,008	0.00\%
760717	CRLSCA12	Carlsbad La Costa	San Diego	3662	-	62,771	0.00\%
831105	CRMLCA11	Carmel Main	Monterey	4592	4,577	406,060	1.13\%
619723	CRNDCA11	Coronado	San Diego	1724	10,589	13,839	76.52\%
530440	CRNGCA12	Corning	Tehama	1179	-	89,716	0.00\%
559157	CRTHCA11	Caruthers	Fresno	383	-	29,715	0.00\%
831106	CRVYCA11	Carmel Valley	Monterey	1039	-	61,473	0.00\%
949725	CSMSCA11	Costa Mesa	Orange	5737	-	178,369	0.00\%
661408	CSTCCA11	Castaic	Los Angeles	3431	-	201,094	0.00\%
831107	CSVLCA11	Castroville	Monterey	1012	-	24,845	0.00\%
707287	CTTICA12	Cotati	Sonoma	1983	11,393	71,216	16.00\%
209161	CTVLCA11	Coulterville	Mariposa	663	-	75,405	0.00\%
530441	CTWDCA11	Cottonwood	Tehama	2138	45,885	116,846	39.27\%
209162	CWLDCA12	Crows Landing	Stanislaus	91	-	9,812	0.00\%
805366	CYCSCA11	Cayucos	San Luis Obispo	526	-	68,635	0.00\%
925081	CYTNCA11	Clayton	Contra Costa	1502	-	71,233	0.00\%
760726	CYWLCA11	Coyote Wells	Imperial	46	-	1,680	0.00\%
925012	DAVLCA12	Danville Main 12	Contra Costa	5110	-	303,232	0.00\%
925085	DAVLCA13	Danville Tassajara	Contra Costa	2391	-	53,030	0.00\%
530442	DAVSCA11	Davis	Yolo	4191	-	143,752	0.00\%
661367	DELNCA11	Delano	Tulare	1939	48,637	230,364	21.11\%
559164	DINBCA01	Dinuba	Tulare	1352	-	78,090	0.00\%
707443	DIXNCA11	Dixon	Solano	1345		110,688	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
858727	DLMRCA12	Del Mar	San Diego	5494	-	40,412	0.00\%
559163	DLRYCA11	Del Rey	Fresno	143	-	21,705	0.00\%
619728	DLZRCA11	Dulzura	San Diego	504	-	28,378	0.00\%
530445	DNGNCA12	Dunnigan	Yolo	113	-	18,518	0.00\%
530446	DNSMCA11	Dunsmuir	Siskiyou	413	-	19,473	0.00\%
530447	DTFLCA11	Alta Dutch Flats	Placer	538	-	43,835	0.00\%
530444	DWNVCA11	Downieville	Sierra	239	-	8,963	0.00\%
661369	EDWRCA01	Edwards	Kern	137	-	6,702	0.00\%
530448	EKCKCA11	Elk Creek	Glenn	100	-	14,917	0.00\%
619729	ELCJCA11	El Cajon	San Diego	4004	4,702	326,642	1.44\%
760730	ELCNCA01	El Centro	Imperial	3848	2,151	156,017	1.38\%
707288	ELK CA11	Elk	Mendocino	211	8,060	8,477	95.08\%
626611	ELMNCA01	El Monte	Los Angeles	9210	7,436	260,083	2.86\%
510013	ELSBCA11	Rich Appian Way	I Contra Costa	3219	-	150,753	0.00\%
310613	ELSGCA12	El Segundo Doug	Los Angeles	4029	-	42,748	0.00\%
949731	ELTRCA11	El Toro	Orange	10967	14,400	161,360	8.92\%
760732	ENCTCA12	Encinitas	San Diego	4571	-	234,551	0.00\%
661368	ERLMCA11	Earlimart	Tulare	332	-	49,860	0.00\%
209192	ESCLCA11	Escalon	San Joaquin	929	-	32,958	0.00\%
760733	ESCNCA01	Escondido	San Diego	7483	-	988,311	0.00\%
530450	ESPRCA11	Esparto	Yolo	266	-	29,375	0.00\%
707289	EURKCA01	Eureka	Humboldt	4799	-	127,638	0.00\%
831108	FETNCA11	Felton	Santa Cruz	976	-	26,254	0.00\%
760735	FLBKCA12	Fallbrook	San Diego	3475	-	356,664	0.00\%
805370	FLMRCA11	Fillmore	Ventura	791	-	58,884	0.00\%
916453	FLSMCA12	Folsom Nimbus	Sacramento	1844	26,554	114,499	23.19\%
916454	FLSMCA13	Folsom El Dorado	Sacramento	2631	-	172,078	0.00\%
916536	FLSMCA14	Folsom Blue Ravir	Sacramento	1768	39,374	49,751	79.14\%
909736	FNTACA11	Fontana	San Bernandino	5840	-	829,593	0.00\%
559166	FRBHCA11	Firebaugh	Fresno	604	-	63,246	0.00\%
760738	FRCKCA11	Furnace Creek	San Bernandino	140	-	5,860	0.00\%
707290	FRFDCA01	Fairfield	Solano	5082	32,398	345,379	9.38\%
530455	FRGLCA11	French Gulch	Shasta	82	-	21,966	0.00\%
510014	FRMTCA11	Fremont Main 11	Alameda	7958	-	461,388	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
530456	GZLLCA11	Gazelle	Siskiyou	44	-	-	\#DIV/0!
209176	HERLCA11	Herald	Sacramento	273	-	62,776	0.00\%
909741	HGLDCA11	Highland	San Bernandino	2208	-	260,788	0.00\%
209177	HGSNCA11	Hughson	Stanislaus	531	-	49,456	0.00\%
707297	HLBGCA11	Healdsburg	Sonoma	2672	16,075	162,508	9.89\%
831111	HLSTCA11	Hollister	San Benito	2923	-	60,953	0.00\%
760742	HLVLCA11	Holtville	Imperial	458	-	36,118	0.00\%
323616	HLWDCA01	Hollywood	Los Angeles	9481	-	530,927	0.00\%
650016	HMBACA12	Half Moon Bay	San Mateo	2349	37,312	91,019	40.99\%
530462	HMCYCA11	Hamilton City	Glenn	145	-	9,970	0.00\%
530463	HMWDCA11	Homewood	El Dorado	1117	-	41,885	0.00\%
559175	HNFRCA01	Hanford	Kings	3748	-	381,264	0.00\%
323617	HNPKCA01	Huntington Park	Los Angeles	6751	-	406,759	0.00\%
707298	HPLDCA12	Hopland	Mendocino	201	-	25,981	0.00\%
530464	HRBKCA11	Hornbrook	Siskiyou	260	-	33,227	0.00\%
510080	HRCLCA11	Hercules Pinole	Contra Costa	2622	-	45,967	0.00\%
559178	HURNCA11	Huron	Fresno	294	-	18,336	0.00\%
310618	HWTHCA01	Hawthorne	Los Angeles	5016	-	72,255	0.00\%
707299	HYVLCA11	Hydesville	Humboldt	265	-	17,119	0.00\%
510017	HYWRCA01	Hayward Main	Alameda	7870	-	125,529	0.00\%
510018	HYWRCA11	Hayward Depot	Alameda	5286	-	143,013	0.00\%
415019	IGNCCA12	Ignacio	Marin	1539	-	17,718	0.00\%
310619	IGWDCA01	Inglewood	Los Angeles	5028	-	79,328	0.00\%
619744	IMBHCA11	Imperial Beach	San Diego	2049	12,190	99,724	12.22\%
760743	IMPRCA11	Imperial	Imperial	559	-	19,900	0.00\%
415020	INVRCA11	Inverness	Marin	447	-	16,784	0.00\%
209179	IONECA11	lone	Amador	874	-	112,159	0.00\%
949745	IRVNCA01	Irvine	Orange	4684	-	122,428	0.00\%
949807	IRVNCA11	Irvine Airport	Orange	5656	-	31,116	0.00\%
949810	IRVNCA12	Spectrum Irvine	Orange	1708	-	948	0.00\%
559180	IVNHCA11	Ivanhoe	Tulare	441	-	193,296	0.00\%
619851	JAMLCA60	Jamul	San Diego	322	-	13,013	0.00\%
619746	JCMBCA11	Jacumba	San Diego	371	-	21,592	0.00\%
209181	JCSNCA01	Jackson	Amador	1451	-	102,215	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
209182	JMTWCA11	Jamestown	Tuolumne	800	-	86,889	0.00\%
760748	JULNCA12	Julian	San Diego	879	-	106,381	0.00\%
559183	KGBGCA11	Kingsburg	Tulare	1028	-	74,271	0.00\%
831112	KGCYCA11	King City	Monterey	1327	-	212,905	0.00\%
707300	KLVLCA12	Kelseyville	Lake	1095	-	106,107	0.00\%
209184	KNFYCA11	Knights Ferry	Stanislaus	141	4,871	7,234	67.33\%
530465	KYBRCA11	Kyburz	El Dorado	60	-	8,164	0.00\%
818620	LACNCA11	La Canada Oak G	Los Angeles	14	-	7,013	0.00\%
818621	LACRCA11	La Crescenta	Los Angeles	6224	-	402,615	0.00\%
650021	LAHNCA11	La Honda	San Mateo	389	-	22,156	0.00\%
858750	LAJLCA11	La Jolla Girard	San Diego	3647	16,281	63,981	25.45\%
619752	LAMSCA01	La Mesa	San Diego	5791	29,460	338,207	8.71\%
661372	LAMTCA11	Lamont	Kern	719	-	103,911	0.00\%
559186	LATNCA11	Laton	Fresno	182	-	14,000	0.00\%
209190	LCFRCA11	Lockeford	San Joaquin	241	-	40,677	0.00\%
661373	LEBCCA11	Lebec	Kern	386	-	74,689	0.00\%
661404	LEBCCA12	Pine Mountain	Kern	678	-	39,041	0.00\%
559188	LEMRCA11	Lemore Main	Kings	1200	15,802	156,276	10.11\%
559189	LEMRCA12	Lemore Wyman	Kings	87	-	3,883	0.00\%
925022	LFYTCA11	Lafayette	Contra Costa	2283	-	38,824	0.00\%
949749	LGNGCA12	Laguna Niguel	Orange	3371	-	40,081	0.00\%
209187	LGRDCA11	Le Grande	Merced	178	-	43,320	0.00\%
209185	LGRNCA12	LaGrande D Pedr	Stanislaus	859	-	47,257	0.00\%
707301	LKBRCA11	Lake Berryessa	Napa	188	-	11,886	0.00\%
661405	LKLACA11	Lake Los Angeles	Los Angeles	427	-	43,680	0.00\%
707302	LKPTCA02	Lakeport	Lake	2039	-	190,486	0.00\%
619751	LKSDCA12	Lakeside	San Diego	1795	-	172,614	0.00\%
530471	LLTNCA11	Loyalton	Plumas	546	-	15,172	0.00\%
916467	LNCLCA11	Lincoln	Placer	840	-	85,884	0.00\%
661374	LNVYCA11	Leona Valley	Los Angeles	322	-	156,071	0.00\%
209191	LODICA01	Lodi	San Joaquin	5596	-	265,687	0.00\%
707303	LOLTCA11	Lolita	Humboldt	123	-	9,355	0.00\%
916470	LOMSCA11	Loomis	Placer	1397	-	115,392	0.00\%
310622	LOMTCA11	Lomita	Los Angeles	5732	-	177,012	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
209248	MDSTCA05	Modesto Tally	Stanislaus	634	-	17,275	0.00\%
209249	MDSTCA52	Modesto Davis	Stanislaus	18	-	1,268	0.00\%
707306	MDTWCA11	Middletown	Lake	874	-	172,164	0.00\%
209202	MKHLCA12	Mokelumne Hill	Calaveras	183	-	14,871	0.00\%
707307	MKVLCA11	McKinleyville	Humboldt	1103	9,736	46,892	20.76\%
650026	MLBRCA11	Millbrae	San Mateo	2613	-	38,267	0.00\%
408114	MLPSCA11	Milpitas	Santa Clara	5636	-	127,982	0.00\%
415027	MLVYCA01	Mill Valley	Marin	3821	-	63,792	0.00\%
707305	MNDCCA11	Mendocino	Mendocino	1560	-	155,033	0.00\%
559195	MNDTCA11	Mendota	Fresno	448	-	76,929	0.00\%
650028	MNPKCA11	Menlo Park	San Mateo	4016	-	175,028	0.00\%
707309	MNRICA11	Monte Rio	Sonoma	518	-	96,663	0.00\%
661376	MOJVCA01	Mojave	Kern	581	-	71,609	0.00\%
925029	MORGCA12	Moraga	Contra Costa	1735	-	74,237	0.00\%
805378	MRBACA11	Morro Bay	San Luis Obispo	993	-	86,371	0.00\%
209196	MRCDCA01	Merced	Merced	5298	-	562,718	0.00\%
530473	MRDNCA11	Meridan	Sutter	150	-	5,420	0.00\%
707308	MRNDCA11	Miranda	Humboldt	286	-	37,236	0.00\%
209203	MRPHCA11	Murphys	Calaveras	818	-	76,963	0.00\%
805377	MRPKCA12	Moorpark	Ventura	2457	-	1,218,522	0.00\%
925030	MRTZCA11	Martinez	Contra Costa	3554	-	285,317	0.00\%
650031	MSBHCA11	Moss Beach	San Mateo	830	-	56,552	0.00\%
949806	MSVJCAAT	Mission Viejo	Orange	1889	-	4,533	0.00\%
530529	MTAGCA11	Montague	Siskiyou	534	-	8,569	0.00\%
760753	MTPSCA11	Mountain Pass	San Bernandino	19	-	6,590	0.00\%
831115	MTRYCA01	Monterey	Monterey	5760	-	172,928	0.00\%
530474	MTSHCA12	Mount Shasta	Siskiyou	1180	-	39,449	0.00\%
650032	MTVWCA11	Mountain View	Santa Clara	7929	-	111,521	0.00\%
530472	MYVICA01	Marysville	Yuba	3543	-	229,635	0.00\%
707310	NAPACA01	Napa	Napa	7620	-	444,116	0.00\%
530477	NCLSCA12	Nicolaus	Sutter	98	-	26,112	0.00\%
916478	NHLDCA11	Edgewood N High	Sacramento	4053	31,539	368,641	8.56\%
661379	NHLLCA01	Newhall	Los Angeles	5371	-	634,278	0.00\%
818646	NHWDCA01	NHWD Lankershir	Los Angeles	6119	-	621,565	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
818647	NHWDCA02	NHWD Magnolia	Los Angeles	12672	-	788,265	0.00\%
707311	NICECA11	Nice	Lake	465	-	88,610	0.00\%
415033	NICSCA11	Nicasio	Marin	250	-	11,117	0.00\%
760855	NILDCA11	Niland Main	Imperial	83	-	14,460	0.00\%
760856	NILDCA12	Ninland Bombay E	Elmperial	98	-	16,814	0.00\%
805380	NIPMCA11	Nipomo	San Luis Obispo	999	-	88,020	0.00\%
818648	NORGCA11	Northridge	Los Angeles	10424	37,683	986,797	3.82\%
916479	NSCRCA11	Wabash	Sacramento	7088	95,277	412,604	23.09\%
916537	NSCRCA12	North Natomas	Sacramento	2047	-	72,922	0.00\%
530480	NSJNCA11	North San Juan	Nevada	490	-	20,740	0.00\%
619754	NTCYCA11	National City High	San Diego	1415	-	24,742	0.00\%
530475	NVCYCA11	Nevada City	Nevada	3415	29,760	175,423	16.96\%
916476	NWCSCA11	Newcastle	Placer	924	-	69,872	0.00\%
209204	NWMNCA12	Newman	Stanislaus	549	-	37,512	0.00\%
530481	NYUBCA11	North Yuba	Yuba	515	-	29,786	0.00\%
707312	OCDNCA11	Occidental	Sonoma	599	-	49,970	0.00\%
760758	OCSDCA11	Oceanside Missiol	San Diego	4352	14,021	330,986	4.24\%
805382	OJAICA11	Ojai	Ventura	1639	-	307,558	0.00\%
209205	OKDLCA11	Oakdale	Stanislaus	2070	-	173,368	0.00\%
510036	OKLDCA03	Oakland Franklin	Alameda	12884	-	153,386	0.00\%
510037	OKLDCA04	Oakland KellogFrı	Alameda	5109	-	477,445	0.00\%
510038	OKLDCA11	Oakland 45th Olyn	Alameda	9172	-	88,471	0.00\%
510039	OKLDCA12	Oakland Holly	Alameda	7805	-	389,792	0.00\%
510040	OKLDCA13	Oakland Mountain	Alameda	4550	-	55,130	0.00\%
925041	OKLYCA11	Oakley	Contra Costa	1105	-	26,657	0.00\%
805381	OKVWCA11	Oakview	Ventura	620	-	73,441	0.00\%
661383	OLDLCA11	Export Oildale	Kern	2977	-	1,019,218	0.00\%
559206	ORCVCA11	Orange Cove	Fresno	399	-	81,348	0.00\%
530483	ORLDCA11	Orland	Glenn	1400	-	91,937	0.00\%
925042	ORNDCA11	Orinda	Contra Costa	1932	-	27,680	0.00\%
714759	ORNGCA11	Orange Chapman	Orange	6854	-	441,253	0.00\%
714760	ORNGCA13	Orange Olive	Orange	5138	-	378,453	0.00\%
714761	ORNGCA14	Orange West	Orange	3181	-	92,757	0.00\%
559207	ORSICA11	Orosi	Tulare	757	-	134,780	0.00\%


	Table 7.17	133-D §9.7 "A	LTERNATIVE	NVESTMENTS"	REHAB EXP	TURES (con	
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
805387	PSBHCA11	Pismo Beach	San Luis Obispo	736	-	54,019	0.00\%
650051	PSCDCA11	Pescadero	San Mateo	565	-	43,093	0.00\%
626650	PSDNCA11	Pasadena Mt Wils	Los Angeles	12284	-	222,373	0.00\%
626651	PSDNCA12	Pasadena Lake	Los Angeles	5609	-	164,318	0.00\%
530488	PSKNCA11	Paskenta	Tehama	101	-	2,639	0.00\%
805385	PSRBCA01	Paso Robles	San Luis Obispo	4945	6,585	551,732	1.19\%
707314	PTLMCA01	Petaluma	Sonoma	4990	-	227,253	0.00\%
530492	PTOLCA01	Portola	Plumas	982	-	19,236	0.00\%
559213	PTVLCA11	Porterville	Tulare	4993	12,698	215,603	5.89\%
707316	PTVYCA11	Potter Valley	Mendocino	528	-	272,174	0.00\%
559210	PXLYCA11	Pixley	Tulare	273	-	42,836	0.00\%
530493	QNCYCA12	Quincy	Plumas	1838	-	132,862	0.00\%
760769	RAMNCA11	Ramona	San Diego	1878	-	148,412	0.00\%
858770	RBRNCA11	Rancho Bernardo	San Diego	4178	-	187,328	0.00\%
916541	RCKLCA01	Stanford Ranch	Placer	3201	-	102,471	0.00\%
916527	RCKLCA11	Rocklin	Placer	1244	-	55,233	0.00\%
510052	RCMDCA11	Richmond SF	Contra Costa	7128	-	348,378	0.00\%
530496	RCVACA11	Richvale	Butte	107	-	5,405	0.00\%
530494	RDBLCA01	Red Bluff	Tehama	3745	123,883	121,506	101.96\%
650053	RDCYCA01	Redwood City	San Mateo	7949	-	225,611	0.00\%
530495	RDNGCA02	Redding Main	Shasta	4862	-	531,011	0.00\%
530531	RDNGCA11	Redding Enterpr	Shasta	3279	18,119	70,508	25.70\%
818652	RESDCA01	Reseda	Los Angeles	10038	19,900	602,866	3.30\%
707317	RIDECA11	Rio Dell	Humboldt	238	18,122	32,097	56.46\%
916526	RILNCA12	Rio Linda	Sacramento	1163	-	45,247	0.00\%
909773	RILTCA11	Rialto	San Bernandino	3898	-	381,712	0.00\%
916533	RNMRCA11	Rancho Murietta	Sacramento	523	-	20,188	0.00\%
858854	RNPSCA11	Rancho Penasquit	San Diego	1446	-	12,207	0.00\%
619852	RNSDCA11	Rancho San Diege	San Diego	814	-	23,052	0.00\%
626654	ROSMCA11	Rosemead	Los Angeles	6423	-	163,405	0.00\%
858771	RSFECA12	Rancho Santa Fe	San Diego	3255	-	98,303	0.00\%
661388	RSMDCA11	Rosamond	Kern	1123	-	94,721	0.00\%
949808	RSMGCA11	R S Margarita	Orange	2003	-	28,744	0.00\%
707337	RTPKCA11	Rohnert Park	Sonoma	2121	-	72,712	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
559215	RVDLCA11	Riverdale	Fresno	336	-	56,131	0.00\%
209214	RVRBCA11	Riverbank	Stanislaus	992	-	23,589	0.00\%
951774	RVSDCA01	Riverside Orange	Riverside	7926	8,685	477,823	1.82\%
951775	RVSDCA11	Woodcrest	Riverside	2640	-	205,180	0.00\%
661407	SAGSCA11	Saugus	Los Angeles	2528	-	245,186	0.00\%
619795	SANTCA01	Santee	San Diego	2186	-	135,006	0.00\%
805391	SATCCA12	Saticoy	Ventura	1946	5,363	121,595	4.41\%
707321	SBSTCA11	Sebastapol	Sonoma	2794	32,610	351,030	9.29\%
916497	SCRMCA01	Sacramento Mn	Sacramento	6182	-	75,992	0.00\%
916498	SCRMCA02	SCRM Ivanhoe	Sacramento	7391	11,948	250,936	4.76\%
916499	SCRMCA03	SCRM Garden	Sacramento	8642	31,091	487,675	6.38\%
916500	SCRMCA11	SCRM Gladstone	Sacramento	6152	-	129,853	0.00\%
916501	SCRMCA12	SCRM Empire	Sacramento	4226	-	156,697	0.00\%
916502	SCRMCA13	SCRM Fruitridge	Sacramento	2983	62,711	127,645	49.13\%
916497	SCRMCALR	Sequoia Pacific St	Sacramento	6182	-	-	\#DIV/0!
916538	SCRMCAMZ	P Street State	Sacramento		-	-	\#DIV/0!
916539	SCRMCATE	First Ave DMV Sta	Sacramento		-	-	\#DIV/0!
831116	SCVYCA01	Scotts Valley	Santa Cruz	1367	-	25,197	0.00\%
530508	SDSPCA11	Soda Springs	Nevada	527	-	79,397	0.00\%
559217	SELMCA11	Selma	Fresno	1616	-	121,015	0.00\%
831117	SESDCA11	Seaside	Monterey	1845	-	54,451	0.00\%
323655	SGATCA01	South Gate	Los Angeles	4611	-	543,039	0.00\%
530504	SGSPCA11	Shingle Springs	El Dorado	3431	34,518	268,615	12.85\%
661392	SHFTCA11	Shafter	Kern	772	-	99,573	0.00\%
530503	SHLKCA01	Shasta Lake	Shasta	342	-	101,712	0.00\%
818656	SHOKCA01	Sherman Oaks	Los Angeles	13316	-	602,971	0.00\%
760796	SHSHCA11	Shoshone	San Bernandino	137	-	9,499	0.00\%
805393	SIMICA11	Simi	Ventura	7815	-	1,643,216	0.00\%
949791	SJCPCA12	S J Capistrano	Orange	4048	-	35,832	0.00\%
209220	SKTNCA01	Stockton Main	San Joaquin	7703	-	489,989	0.00\%
209221	SKTNCA11	Stockton Granite	San Joaquin	7644	-	635,162	0.00\%
209222	SKTNCA12	Stockton Ashley	San Joaquin	1196	-	134,528	0.00\%
209223	SKTNCA14	Stockton Redwoor	(San Joaquin	1471	-	102,554	0.00\%
831118	SLDDCA11	Soledad	Monterey	947	-	148,989	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
661394	SLMNCA11	Solemint	Los Angeles	3415	-	397,607	0.00\%
831119	SLNSCA01	Salinas Main	Monterey	5792	-	110,870	0.00\%
831120	SLNSCA11	Hickory Salinas	Monterey	2176	-	47,742	0.00\%
831121	SLNSCA12	Glenview	Monterey	556	-	8,556	0.00\%
831122	SLNSCA13	Hunter	Monterey	680	-	11,406	0.00\%
831123	SLNSCA14	Moro	Monterey	1095	-	48,454	0.00\%
714797	SLVRCA11	Silverado	Orange	191	-	54,216	0.00\%
530507	SMAVCA11	Smartsville	Yuba	318	-	19,293	0.00\%
209216	SNADCA11	San Andreas	Calaveras	1238	-	110,300	0.00\%
714788	SNANCA01	Bush	Orange	8268	-	182,223	0.00\%
714789	SNANCA11	Bristol	Orange	9617	73,863	264,596	27.92\%
714804	SNANCA12	Santa Ana West S	Orange	2806	16,598	74,071	22.41\%
831124	SNARCA11	San Ardo	Monterey	119	-	25,111	0.00\%
650055	SNBUCA02	San Bruno	San Mateo	9822	-	104,775	0.00\%
949776	SNCLCA12	San Clemente	Orange	2602	-	22,980	0.00\%
650056	SNCRCA11	San Carlos	San Mateo	6590	-	44,154	0.00\%
831125	SNCZCA01	Santa Cruz	Santa Cruz	6297	-	112,232	0.00\%
831126	SNCZCA11	Santa Cruz Capito	Santa Cruz	4979	32,778	126,850	25.84\%
619777	SNDGCA01	SNDG C Street	San Diego	5627	-	47,102	0.00\%
619778	SNDGCA02	SNDG University	San Diego	5448	-	110,551	0.00\%
858779	SNDGCA03	SNDG Linda Vista	San Diego	8083	-	330,520	0.00\%
619780	SNDGCA05	SNDG Saipan	San Diego	2182	-	106,177	0.00\%
619781	SNDGCA06	SNDG 37th Street	San Diego	3952	-	54,238	0.00\%
619782	SNDGCA11	SNDG College	San Diego	2566	-	157,196	0.00\%
619783	SNDGCA12	SNDG Market Stre	\& San Diego	2184	-	33,865	0.00\%
619784	SNDGCA14	SNDG Tennyson	San Diego	2848	-	34,696	0.00\%
858785	SNDGCA15	SNDG Regents	San Diego	6954	-	79,119	0.00\%
858786	SNDGCA16	SNDG Mira Mesa	San Diego	5310	-	70,026	0.00\%
415058	SNFCCA01	SF Bush Pine	San Francisco	14854	-	319,373	0.00\%
415059	SNFCCA04	SF Market McCop	San Francisco	10962	5,814	499,757	1.16\%
415060	SNFCCA05	SF Mission 25th S	San Francisco	10082	10,859	247,554	4.39\%
415061	SNFCCA06	SF Juniper Onond	San Francisco	11364	67,367	293,567	22.95\%
415067	SNFCCA12	SF Larkin Steiner	San Francisco	22366	-	450,909	0.00\%
415064	SNFCCA13	SF Evergreen 9th	San Francisco	9186	-	191,019	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
Wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
415065	SNFCCA14	SF Montrose 19th	San Francisco	11765	-	232,590	0.00\%
415066	SNFCCA17	SF Third St	San Mateo	4510	-	170,617	0.00\%
415068	SNFCCA21	SF Folsom	San Francisco	7656	-	58,445	0.00\%
415084	SNFCCA64	UC Hospital	San Francisco		-	1,167	0.00\%
626658	SNGBCA01	San Gabriel	Los Angeles	4610	19,071	235,554	8.10\%
415069	SNGNCA11	San Geronimo	Marin	461	-	28,570	0.00\%
831127	SNJNCA11	San Juan Baustist	San Benito	384	-	7,077	0.00\%
408128	SNJSCA02	San Jose Main	Santa Clara	12910	-	253,953	0.00\%
408129	SNJSCA11	San Jose White RI	Santa Clara	8051	21,239	312,421	6.80\%
408130	SNJSCA12	San Jose Dial Wa!	Santa Clara	13069	36,755	282,004	13.03\%
408131	SNJSCA13	San Jose Chynow	Santa Clara	7594	-	621,753	0.00\%
408132	SNJSCA14	San Jose Foxwort\|	Santa Clara	9411	151,565	564,078	26.87\%
408133	SNJSCA15	San Jose Evergrer	Santa Clara	5113	-	360,280	0.00\%
408134	SNJSCA18	San Jose Almader	Santa Clara	2877	-	202,967	0.00\%
408145	SNJSCA21	San Jose Junction	Santa Clara	6140	-	44,129	0.00\%
408142	SNJSCA22	San Jose Bailey	Santa Clara	149	-	25,850	0.00\%
831135	SNLCCA11	San Lucas	Monterey	43	-	21,562	0.00\%
510070	SNLNCA11	San Leandro	Alameda	8284	-	212,461	0.00\%
805389	SNLOCA01	San Luis Obispo	San Luis Obispo	4352	-	575,015	0.00\%
408136	SNMACA11	San Martin	Santa Clara	632	-	81,065	0.00\%
760792	SNMCCA11	San Marcos	San Diego	4889	1,511	419,648	0.36\%
805390	SNMICA11	Santa Margarita	San Luis Obispo	540	-	42,927	0.00\%
650071	SNMTCA11	San Mateo	San Mateo	7900	-	178,254	0.00\%
310659	SNPDCA01	San Pedro	Los Angeles	7437	-	403,536	0.00\%
209218	SNRACA13	Sonora	Tuolumne	4857	-	412,432	0.00\%
415072	SNRFCA01	San Rafael Main	Marin	6998	-	172,731	0.00\%
415073	SNRFCA11	Parkway	Marin	2956	-	21,352	0.00\%
925074	SNRMCA11	San Ramon	Alameda	4197	-	169,531	0.00\%
707320	SNRSCA01	Santa Rosa Main	Sonoma	11549	-	734,403	0.00\%
707319	SNRSCA11	Los Alamos	Sonoma	2537	-	91,433	0.00\%
408143	SNTCCA01	Santa Clara Space	\& Santa Clara	4768	-	86,502	0.00\%
408137	SNTCCA11	Santa Clara Bellor	Santa Clara	8974	-	175,946	0.00\%
408138	SNVACA01	Carrol Sunnyvale	Santa Clara	7759	6,195	147,584	4.20\%
408139	SNVACA11	Mathilda Sunneyvi	: Santa Clara	1662	-	15,573	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
WC	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
619794	SNYSCA12	San Ysidro	San Diego	1283	-	52,354	0.00\%
707323	SONMCA12	Sonoma	Sonoma	3961	-	230,651	0.00\%
626660	SPSDCA11	Sout Pasadena	Mi Los Angeles	2834	-	29,159	0.00\%
559219	SPVLCA11	Springville	Tulare	751	-	44,138	0.00\%
530505	SRCYCA11	Sierra City	Sierra	430	-	10,677	0.00\%
559224	SRFRCA11	Stratford	Kings	85	-	14,407	0.00\%
530506	SRVLCA11	Sierraville	Sierra	162	-	4,145	0.00\%
415075	SSLTCA11	Sausalito Lark	, Marin	1737	-	17,833	0.00\%
530509	STAHCA01	South Tahoe S	El Dorado	2731	-	72,231	0.00\%
530511	STAHCA12	South Tahoe T	El Dorado	128	-	6,042	0.00\%
530512	STAHCA13	South Tahoe M	¢ El Dorado	785	-	26,229	0.00\%
415076	STBHCA11	Stinson Beach	Marin	1202	-	33,640	0.00\%
209225	STCKCA11	Sutter Creek	Amador	697	-	44,477	0.00\%
530513	STFRCA11	Stonyford	Colusa	138	-	5,436	0.00\%
707318	STHNCA11	St Helena	Napa	2372	-	99,871	0.00\%
707324	SUISCA11	Suisun City	Solano	345	-	11,330	0.00\%
925077	SUNLCA11	Sunol	Alameda	191	-	44,606	0.00\%
415005	TBRNCA11	Tiburon	Marin	1686	-	3,569	0.00\%
661395	THCHCA01	Techachapi	Kern	1787	-	184,186	0.00\%
530514	THCYCA01	Tahoe City	Placer	2438	-	52,998	0.00\%
559228	THRRCA11	Three Rivers	Tulare	609	59,250	99,547	59.52\%
209227	THTNCA11	Thornton	San Joaquin	100	-	39,916	0.00\%
707325	TMLSCA12	Tomales	Sonoma	287	-	27,618	0.00\%
805396	TMTNCA11	Templeton	San Luis Obispo	643	-	49,354	0.00\%
559229	TPTNCA11	Tipton	Tulare	199	-	32,856	0.00\%
209230	TRACCA11	Tracy	San Joaquin	4319	-	390,405	0.00\%
559226	TRBLCA11	Terra Bella	Tulare	417	-	70,772	0.00\%
209232	TRLCCA11	Turlock	Stanislaus	6746	-	379,362	0.00\%
310661	TRNCCA11	Torrance	Los Angeles	4260	-	220,986	0.00\%
707326	TRNDCA11	Trinidad	Humboldt	296	-	27,229	0.00\%
831140	TRPSCA11	Tres Pinos	San Benito	214	-	4,801	0.00\%
530515	TRUCCA11	Truckee	Nevada	3351	-	117,401	0.00\%
530516	TRUCCA12	North Star	Placer	606	-	7,483	0.00\%
559231	TULRCA11	Tulare	Tulare	3875	-	367,230	0.00\%


Table 7.17 GO 133-D §9.7 "ALTERNATIVE INVESTMENTS" vs. REHAB EXPENDITURES (cont'd)							
wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab   Expenditures	Pct GO 133-D §0.7
916519	WSCRCA11	Frontier	Sacramento	3690		164,566	0.00\%
209237	WTFRCA11	Waterford	Stanislaus	758	-	108,950	0.00\%
530520	WTLDCA12	Wheatland	Sutter	497	-	37,759	0.00\%
831141	WTVLCA01	Watsonville	Santa Cruz	7582	48,755	199,766	24.41\%
530525	YBCYCA01	Yuba City Marysvi	Sutter	4625	-	130,340	0.00\%
707336	YNVLCA11	Yountville	Napa	819	-	27,544	0.00\%
530524	YREKCA11	Yreka	Siskiyou	1314	-	13,848	0.00\%
714802	YRLNCA11	Yorba Linda	Orange	3299	-	348,775	0.00\%
714809	YRLNCA12	Gypsum Canyon	Orange	562	-	34,901	0.00\%
209240	YSMTCA11	Yosemite Main	Mariposa	529	-	79,884	0.00\%
209241	YSMTCA12	El Portal	Mariposa	299	-	44,657	0.00\%
TOTALS 201	2019			1,915,900	2,725,499	107,211,728	2.54\%


	Table 7.18   AT\&T CALIFORNIA   COMPARISON OF GO 133-D §9.7 "ALTERNATIVE PROPOSED INVESTMENTS" AND TOTAL 20182019 REHAB EXPENDITURES   (Sorted by Other Rehab Expenditures -- Largest to Smallest)						
wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative   Investments"	Other Rehab Expenditures	Pct GO 133-D §o. 7
661359	BKFDCA14	Bakersfield Temple	Kern	6693		1,678,481	0.00\%
805393	SIMICA11	Simi	Ventura	7815		1,643,216	0.00\%
818610	CNPKCA01	Canoga Park	Los Angeles	13344	16,043	1,356,631	1.18\%
661357	BKFDCA12	Bakersfield Main Fairview	Kern	6158	-	1,338,241	0.00\%
310615	GRDNCA01	Gardena	Los Angeles	11967		1,293,390	0.00\%
805377	MRPKCA12	Moorpark	Ventura	2457		1,218,522	0.00\%
310609	CMTNCA01	Compton	Los Angeles	9969	51,395	1,171,795	4.39\%
661383	OLDLCA11	Export Oildale	Kern	2977		1,019,218	0.00\%
951721	CORNCA11	Corona	Riverside	10738	12,733	1,015,536	1.25\%
707331	VLLJCA01	Vallejo	Solano	6162		988,509	0.00\%
760733	ESCNCA01	Escondido	San Diego	7483		988,311	0.00\%
818648	NORGCA11	Northridge	Los Angeles	10424	37,683	986,797	3.82\%
818600	AGORCA11	Agoura	Los Angeles	4858		$951,226$	0.00\%
559159	CLVSCA11	Clovis	Fresno	8311	19,168	881,838	2.17\%
909736	FNTACA11	Fontana	San Bernandino	5840	,	829,593	0.00\%
818647	NHWDCA02	NHWD Magnolia	Los Angeles	12672	-	788,265	0.00\%
$559168$	FRSNCA01	Fresno Main	Fresno	7618	8,285	783,227	1.06\%
$707320$	SNRSCA01	Santa Rosa Main	Sonoma	11549		734,403	0.00\%
714702	ANHMCA11	Anaheim Cypress	Orange	7686	-	719,465	0.00\%
559194	MADRCA11	Madera Main	Madera	3987	21,845	685,245	3.19\%
$818605$	BRBNCA11	Burbank Palm	Los Angeles	9868	-	671,797	0.00\%
$323633$	LSANCA12	Normandy	Los Angeles	9451		645,411	0.00\%
$818614$	GLDLCA11	Glendale	Los Angeles	14660		644,655	0.00\%
209199	MDSTCA02	Modesto Main	Stanislaus	11017	-	644,595	0.00\%
559170	FRSNCA13	Fresno Sierra	Fresno	6388	-	641,601	0.00\%
559235	VISLCA11	Visalia Main		6971	-	641,327	0.00\%


Wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
209221	SKTNCA11	Stockton Granite	San Joaquin	7644	-	635,162	0.00\%
661379	NHLLCA01	Newhall	Los Angeles	5371	-	634,278	0.00\%
408131	SNJSCA13	San Jose Chynoweth	Santa Clara	7594	-	621,753	0.00\%
818646	NHWDCA01	NHWD Lankershim	Los Angeles	6119	-	621,565	0.00\%
818656	SHOKCA01	Sherman Oaks	Los Angeles	13316	-	602,971	0.00\%
818652	RESDCA01	Reseda	Los Angeles	10038	19,900	602,866	3.30\%
805389	SNLOCA01	San Luis Obispo	San Luis Obispo	4352	-	575,015	0.00\%
707292	FTBRCA02	Fort Bragg	Mendocino	3227	49,006	571,959	8.57\%
408132	SNJSCA14	San Jose Foxworthy	Santa Clara	9411	151,565	564,078	26.87\%
209196	MRCDCA01	Merced	Merced	5298	-	562,718	0.00\%
714737	FUTNCA01	Fullerton	Orange	8005	-	559,318	0.00\%
805385	PSRBCA01	Paso Robles	San Luis Obispo	4945	6,585	551,732	1.19\%
323655	SGATCA01	South Gate	Los Angeles	4611	-	543,039	0.00\%
530495	RDNGCA02	Redding Main	Shasta	4862	-	531,011	0.00\%
323616	HLWDCA01	Hollywood	Los Angeles	9481	-	530,927	0.00\%
818662	VNNYCA02	Van Nuys	Los Angeles	10196	15,266	529,734	2.88\%
925079	WNCKCA11	Walnut Creek	Contra Costa	11153	22,950	506,532	4.53\%
661356	BKFDCA11	Bakersfield Empire	Kern	1142	-	501,216	0.00\%
415059	SNFCCA04	SF Market McCoppin	San Francisco	10962	5,814	499,757	1.16\%
209220	SKTNCA01	Stockton Main	San Joaquin	7703	-	489,989	0.00\%
925025	LVMRCA11	Livermore	Alameda	6279	-	489,137	0.00\%
916499	SCRMCA03	SCRM Garden	Sacramento	8642	31,091	487,675	6.38\%
951774	RVSDCA01	Riverside Orange	Riverside	7926	8,685	477,823	1.82\%
510037	OKLDCA04	Oakland KellogFruitvale	Alameda	5109	-	477,445	0.00\%
951704	ARTNCA11	Arlington	Riverside	5896	-	477,090	0.00\%
714767	PLCNCA11	Placentia	Orange	5397	-	476,847	0.00\%
707330	VCVLCA12	Vacaville	Solano	5328	-	471,817	0.00\%
510014	FRMTCA11	Fremont Main 11	Alameda	7958	-	461,388	0.00\%
415067	SNFCCA12	SF Larkin Steiner	San Francisco	22366	-	450,909	0.00\%
530489	PLVLCA11	Placerville Main	El Dorado	7102	78,185	445,092	17.57\%
707310	NAPACA01	Napa	Napa	7620	-	444,116	0.00\%
714759	ORNGCA11	Orange Chapman	Orange	6854	-	441,253	0.00\%
661358	BKFDCA13	Bakersfield Columbus	Kern	2365	-	439,850	0.00\%
951765	PDLYCA11	Pedley	Riverside	2466	27,450	435,505	6.30\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
760792	SNMCCA11	San Marcos	San Diego	4889	1,511	419,648	0.36\%
213632	LSANCA11	Rampart	Los Angeles	10841	-	413,279	0.00\%
916479	NSCRCA11	Wabash	Sacramento	7088	95,277	412,604	23.09\%
209218	SNRACA13	Sonora	Tuolumne	4857	-	412,432	0.00\%
323617	HNPKCA01	Huntington Park	Los Angeles	6751	-	406,759	0.00\%
831105	CRMLCA11	Carmel Main	Monterey	4592	4,577	406,060	1.13\%
310659	SNPDCA01	San Pedro	Los Angeles	7437	-	403,536	0.00\%
818621	LACRCA11	La Crescenta	Los Angeles	6224	-	402,615	0.00\%
661394	SLMNCA11	Solemint	Los Angeles	3415	-	397,607	0.00\%
760800	VISTCA12	Vista	San Diego	5720	-	393,191	0.00\%
209230	TRACCA11	Tracy	San Joaquin	4319	-	390,405	0.00\%
510039	OKLDCA12	Oakland Holly	Alameda	7805	-	389,792	0.00\%
805352	ARGRCA12	Arroyo Grande	San Luis Obispo	3827	-	389,592	0.00\%
925003	ANTCCA11	Antioch	Contra Costa	5049	-	383,040	0.00\%
909773	RILTCA11	Rialto	San Bernandino	3898	-	381,712	0.00\%
559175	HNFRCA01	Hanford	Kings	3748	-	381,264	0.00\%
209232	TRLCCA11	Turlock	Stanislaus	6746	-	379,362	0.00\%
714760	ORNGCA13	Orange Olive	Orange	5138	-	378,453	0.00\%
323641	LSANCA34	LSAN Angeles	Los Angeles	9593	8,133	374,465	2.17\%
661384	PLDLCA01	Palmdale	Los Angeles	4380	17,422	371,660	4.69\%
310664	WLMGCA01	Wilmington	Los Angeles	5429	7,678	370,114	2.07\%
916478	NHLDCA11	Edgewood N Highl	Sacramento	4053	31,539	368,641	8.56\%
559231	TULRCA11	Tulare	Tulare	3875	-	367,230	0.00\%
323629	LSANCA08	LSAN Melrose	Los Angeles	11621	-	365,907	0.00\%
916451	FROKCA11	Fair Oaks	Sacramento	7463	56,582	362,215	15.62\%
408133	SNJSCA15	San Jose Evergreen San Felipe	Santa Clara	5113	-	360,280	0.00\%
760735	FLBKCA12	Fallbrook	San Diego	3475	-	356,664	0.00\%
707321	SBSTCA11	Sebastapol	Sonoma	2794	32,610	351,030	9.29\%
714802	YRLNCA11	Yorba Linda	Orange	3299	-	348,775	0.00\%
510052	RCMDCA11	Richmond SF	Contra Costa	7128	-	348,378	0.00\%
707290	FRFDCA01	Fairfield	Solano	5082	32,398	345,379	9.38\%
714710	BNPKCA11	Buena Park	Orange	4388	-	340,621	0.00\%
619752	LAMSCA01	La Mesa	San Diego	5791	29,460	338,207	8.71\%
323636	LSANCA15	LSAN Axminster	Los Angeles	7990	-	337,619	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab   Expenditures	Pct GO 133-D §0.7
559245	FRSNCA14	Fresno West Highway City	Fresno	3283	80,144	335,224	23.91\%
213630	LSANCA09	Richmond	Los Angeles	6015	-	335,031	0.00\%
925009	CNCRCA01	Concord	Contra Costa	8980	-	332,450	0.00\%
760758	OCSDCA11	Oceanside Mission	San Diego	4352	14,021	330,986	4.24\%
858779	SNDGCA03	SNDG Linda Vista	San Diego	8083	-	330,520	0.00\%
661375	LTRKCA11	Little Rock	Los Angeles	969	-	326,765	0.00\%
619729	ELCJCA11	El Cajon	San Diego	4004	4,702	326,642	1.44\%
714709	BREACA12	Brea	Orange	2998	-	326,264	0.00\%
714701	ANHMCA01	Anaheim Lemon	Orange	7849	-	321,767	0.00\%
310607	BVHLCA01	Beverly Hills	Los Angeles	16372	-	320,349	0.00\%
415058	SNFCCA01	SF Bush Pine	San Francisco	14854	-	319,373	0.00\%
707328	UKIHCA01	Ukiah Main	Mendocino	3947	17,349	316,473	5.48\%
408129	SNJSCA11	San Jose White Rd	Santa Clara	8051	21,239	312,421	6.80\%
661351	AGDLCA11	Agua Dulce	Los Angeles	456	-	311,170	0.00\%
707304	LWLKCA11	Lower Lake	Lake	1965	27,689	308,029	8.99\%
661361	BKFDCA17	Bakersfield West Rosedale	Kern	3311	-	307,839	0.00\%
805382	OJAICA11	Ojai	Ventura	1639	-	307,558	0.00\%
909720	COTNCA11	Colton	San Bernandino	3205	-	304,731	0.00\%
925012	DAVLCA12	Danville Main 12	Contra Costa	5110	-	303,232	0.00\%
707334	WLTSCA12	Willits	Mendocino	2049	-	302,155	0.00\%
818666	CLBSCA11	Calabasas Park Sorrento	Los Angeles	3840	-	300,793	0.00\%
510078	UNCYCA11	Union City	Alameda	4821	-	300,413	0.00\%
805399	VNTRCA11	Ventura Main Montalvo	Ventura	4798	6,318	295,151	2.14\%
415061	SNFCCA06	SF Juniper Onondaga	San Francisco	11364	67,367	293,567	22.95\%
213624	LSANCA02	Madison 02 MO	Los Angeles	7967	-	291,514	0.00\%
530438	CHICCA01	Chico Main	Butte	10221	6,955	287,579	2.42\%
925030	MRTZCA11	Martinez	Contra Costa	3554	-	285,317	0.00\%
530459	GRVYCA01	Grass Valley	Nevada	7879	28,787	284,966	10.10\%
858762	PCBHCA01	Garnet	San Diego	4157	-	284,411	0.00\%
323631	LSANCA10	LSAN Webster	Los Angeles	9845	-	283,033	0.00\%
323634	LSANCA13	LSAN Plymouth	Los Angeles	5803	-	282,014	0.00\%
408130	SNJSCA12	San Jose Dial Way	Santa Clara	13069	36,755	282,004	13.03\%
310608	CLCYCA11	Culver City	Los Angeles	7964	-	277,935	0.00\%
559169	FRSNCA11	Fresno Baldwin	Fresno	5377	-	275,888	0.00\%


Wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab   Expenditures	Pct GO 133-D §0.7
323643	LSANCA38	LSAN Republic	Los Angeles	6084	-	273,973	0.00\%
559172	FRSNCA12	Fresno Clinton	Fresno	4088	-	273,821	0.00\%
707316	PTVYCA11	Potter Valley	Mendocino	528	-	272,174	0.00\%
530504	SGSPCA11	Shingle Springs	El Dorado	3431	34,518	268,615	12.85\%
209191	LODICA01	Lodi	San Joaquin	5596	-	265,687	0.00\%
714789	SNANCA11	Bristol	Orange	9617	73,863	264,596	27.92\%
323642	LSANCA35	LSAN Montebello	Los Angeles	7620	-	261,864	0.00\%
909741	HGLDCA11	Highland	San Bernandino	2208	-	260,788	0.00\%
510015	FRMTCA12	Fremont Adams Oliver 12	Alameda	6839	-	260,114	0.00\%
626611	ELMNCA01	El Monte	Los Angeles	9210	7,436	260,083	2.86\%
209153	ATWRCA12	Atwater	Merced	1837	-	257,259	0.00\%
661371	FZPKCA11	Frazier Park	Kern	757	-	255,429	0.00\%
408128	SNJSCA02	San Jose Main	Santa Clara	12910	-	253,953	0.00\%
925049	PSBGCA01	Pittsburg Main	Contra Costa	2490	-	253,899	0.00\%
916498	SCRMCA02	SCRM Ivanhoe	Sacramento	7391	11,948	250,936	4.76\%
415060	SNFCCA05	SF Mission 25th St	San Francisco	10082	10,859	247,554	4.39\%
661407	SAGSCA11	Saugus	Los Angeles	2528	-	245,186	0.00\%
650024	LSATCA11	Los Altos	Santa Clara	4386	45,785	236,071	19.39\%
626658	SNGBCA01	San Gabriel	Los Angeles	4610	19,071	235,554	8.10\%
760732	ENCTCA12	Encinitas	San Diego	4571	-	234,551	0.00\%
626601	ALHBCA01	Alhambra	Los Angeles	8889	-	232,806	0.00\%
415065	SNFCCA14	SF Montrose 19th	San Francisco	11765	-	232,590	0.00\%
323626	LSANCA05	LSAN Pleasant	Los Angeles	6868	5,382	232,270	2.32\%
707323	SONMCA12	Sonoma	Sonoma	3961	-	230,651	0.00\%
661367	DELNCA11	Delano	Tulare	1939	48,637	230,364	21.11\%
530472	MYVICA01	Marysville	Yuba	3543	-	229,635	0.00\%
562649	PRMTCA01	Paramount	Los Angeles	4428	-	228,130	0.00\%
707314	PTLMCA01	Petaluma	Sonoma	4990	-	227,253	0.00\%
650053	RDCYCA01	Redwood City	San Mateo	7949	-	225,611	0.00\%
626650	PSDNCA11	Pasadena Mt Wilson Green	Los Angeles	12284	-	222,373	0.00\%
310661	TRNCCA11	Torrance	Los Angeles	4260	-	220,986	0.00\%
530490	PLVLCA12	Placerville Niagara	El Dorado	2240	5,875	220,920	2.66\%
323635	LSANCA14	LSAN Adams	Los Angeles	3816	17,409	218,231	7.98\%
559213	PTVLCA11	Porterville	Tulare	4993	12,698	215,603	5.89\%


|  | Table 7.18 GO | 133-D §9.7 "ALT INVESTMENTS" vs. TOTAL REHAB EXPENDITURES (Sorted by Other Rehab Expenditures) (cont'd) |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
415072	SNRFCA01	San Rafael Main	Marin	6998	-	172,731	0.00\%
619751	LKSDCA12	Lakeside	San Diego	1795	-	172,614	0.00\%
530428	AUBNCA01	Auburn Main	Placer	5789	-	172,598	0.00\%
707306	MDTWCA11	Middletown	Lake	874	-	172,164	0.00\%
916454	FLSMCA13	Folsom El Dorado Hills	Sacramento	2631	-	172,078	0.00\%
805364	CMBACA11	Cambria	San Luis Obispo	1435	-	170,952	0.00\%
415066	SNFCCA17	SF Third St	San Mateo	4510	-	170,617	0.00\%
925074	SNRMCA11	San Ramon	Alameda	4197	-	169,531	0.00\%
805354	ATSCCA11	Atascadero	San Luis Obispo	2312	-	169,359	0.00\%
626602	ARCDCA11	Arcadia	Los Angeles	4800	-	168,770	0.00\%
559158	CHWCCA11	Chowchilla	Madera	963	-	166,189	0.00\%
619718	CHVSCA11	Chula Vista Third Avenue	San Diego	3894	8,957	165,333	5.42\%
916519	WSCRCA11	Frontier	Sacramento	3690	-	164,566	0.00\%
626651	PSDNCA12	Pasadena Lake	Los Angeles	5609	-	164,318	0.00\%
805400	VNTRCA02	Ventura Fir	Ventura	2365	-	163,802	0.00\%
626654	ROSMCA11	Rosemead	Los Angeles	6423	-	163,405	0.00\%
707297	HLBGCA11	Healdsburg	Sonoma	2672	16,075	162,508	9.89\%
949731	ELTRCA11	El Toro	Orange	10967	14,400	161,360	8.92\%
650010	COLACA01	Colma Daly City	San Mateo	5878	39,715	159,553	24.89\%
760799	VLCTCA11	Valley Center	San Diego	2286	-	157,356	0.00\%
209193	LSBNCA12	Los Banos	Merced	2068	-	157,287	0.00\%
619782	SNDGCA11	SNDG College	San Diego	2566	-	157,196	0.00\%
916501	SCRMCA12	SCRM Empire	Sacramento	4226	-	156,697	0.00\%
559188	LEMRCA11	Lemore Main	Kings	1200	15,802	156,276	10.11\%
661374	LNVYCA11	Leona Valley	Los Angeles	322	-	156,071	0.00\%
760730	ELCNCA01	El Centro	Imperial	3848	2,151	156,017	1.38\%
707305	MNDCCA11	Mendocino	Mendocino	1560	-	155,033	0.00\%
510036	OKLDCA03	Oakland Franklin	Alameda	12884	-	153,386	0.00\%
805362	BYPKCA11	Baywood Park	San Luis Obispo	920	-	151,562	0.00\%
510013	ELSBCA11	Rich Appian Way El Sobrante	Contra Costa	3219	-	150,753	0.00\%
831118	SLDDCA11	Soledad	Monterey	947	-	148,989	0.00\%
760769	RAMNCA11	Ramona	San Diego	1878	-	148,412	0.00\%
408138	SNVACA01	Carrol Sunnyvale	Santa Clara	7759	6,195	147,584	4.20\%
707291	FSVLCA11	Forestville	Sonoma	737	-	147,241	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
707282	CLSTCA11	Calistoga	Napa	1111		146,784	0.00\%
661353	ARVNCA11	Arvin	Kern	736	-	146,034	0.00\%
530442	DAVSCA11	Davis	Yolo	4191		143,752	0.00\%
510018	HYWRCA11	Hayward Depot	Alameda	5286		143,013	0.00\%
530485	ORVLCA12	Oroville East	Butte	1522	11,418	139,512	8.18\%
619795	SANTCA01	Santee	San Diego	2186	-	135,006	0.00\%
559207	ORSICA11	Orosi	Tulare	757	-	134,780	0.00\%
714798	TUSTCA11	Tustin 11	Orange	6962	-	134,751	0.00\%
209222	SKTNCA12	Stockton Ashley	San Joaquin	1196	-	134,528	0.00\%
707335	WNDSCA11	Windsor	Sonoma	1693	-	134,483	0.00\%
949722	CRDMCA11	Corona Del Mar	Orange	6350	-	132,880	0.00\%
530493	QNCYCA12	Quincy	Plumas	1838	-	132,862	0.00\%
707284	CODLCA11	Cloverdale	Sonoma	832	-	130,963	0.00\%
530525	YBCYCA01	Yuba City Marysville	Sutter	4625	-	130,340	0.00\%
559239	WDLKCA11	Woodlake	Tulare	533	-	130,178	0.00\%
925007	BRWDCA12	Brentwood	Contra Costa	3696	-	129,956	0.00\%
916500	SCRMCA11	SCRM Gladstone	Sacramento	6152	-	129,853	0.00\%
559160	CLNGCA01	Coalinga	Fresno	817	-	128,060	0.00\%
408114	MLPSCA11	Milpitas	Santa Clara	5636	-	127,982	0.00\%
916502	SCRMCA13	SCRM Fruitridge	Sacramento	2983	62,711	127,645	49.13\%
707289	EURKCA01	Eureka	Humboldt	4799	-	127,638	0.00\%
831126	SNCZCA11	Santa Cruz Capitola	Santa Cruz	4979	32,778	126,850	25.84\%
510017	HYWRCA01	Hayward Main	Alameda	7870	-	125,529	0.00\%
661409	BKFDCA19	Bakersfield Nomad	Kern	1972	-	123,092	0.00\%
661410	ACTNCA11	Acton	Los Angeles	743	-	122,841	0.00\%
530484	ORVLCA11	Oroville Main	Butte	3496	-	122,572	0.00\%
949745	IRVNCA01	Irvine	Orange	4684	-	122,428	0.00\%
209233	TWHRCA11	Twain Harte	Tuolumne	1607	-	122,275	0.00\%
831101	BGSRCA11	Big Sur	Monterey	389	-	122,197	0.00\%
805391	SATCCA12	Saticoy	Ventura	1946	5,363	121,595	4.41\%
530494	RDBLCA01	Red Bluff	Tehama	3745	123,883	121,506	101.96\%
707280	BNVLCA11	Boonville	Mendocino	645	12,118	121,299	9.99\%
559217	SELMCA11	Selma	Fresno	1616	-	121,015	0.00\%
650045	PLALCA02	Palo Alto Main	Santa Clara	10518		120,501	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab   Expenditures	Pct GO 133-D §0.7
619700	ALPICA12	Alpine	San Diego	1624	47,280	118,847	39.78\%
530515	TRUCCA11	Truckee	Nevada	3351	-	117,401	0.00\%
209212	PLMOCA11	Plymouth	Amador	1528	-	117,107	0.00\%
530441	CTWDCA11	Cottonwood	Tehama	2138	45,885	116,846	39.27\%
916470	LOMSCA11	Loomis	Placer	1397	-	115,392	0.00\%
916453	FLSMCA12	Folsom Nimbus	Sacramento	1844	26,554	114,499	23.19\%
831125	SNCZCA01	Santa Cruz	Santa Cruz	6297	-	112,232	0.00\%
209179	IONECA11	Ione	Amador	874	-	112,159	0.00\%
650032	MTVWCA11	Mountain View	Santa Clara	7929	-	111,521	0.00\%
831119	SLNSCA01	Salinas Main	Monterey	5792	-	110,870	0.00\%
707443	DIXNCA11	Dixon	Solano	1345	-	110,688	0.00\%
619778	SNDGCA02	SNDG University	San Diego	5448	-	110,551	0.00\%
209216	SNADCA11	San Andreas	Calaveras	1238	-	110,300	0.00\%
209237	WTFRCA11	Waterford	Stanislaus	758	-	108,950	0.00\%
760708	BRWLCA11	Brawley	Imperial	1759	-	108,509	0.00\%
831102	BLCKCA11	Boulder Creek	Santa Cruz	1051	51,244	106,508	48.11\%
760748	JULNCA12	Julian	San Diego	879	-	106,381	0.00\%
619780	SNDGCA05	SNDG Saipan	San Diego	2182	-	106,177	0.00\%
650006	BRLNCA01	Burlingame	San Mateo	7936	72,737	106,149	68.52\%
707300	KLVLCA12	Kelseyville	Lake	1095	-	106,107	0.00\%
650055	SNBUCA02	San Bruno	San Mateo	9822	-	104,775	0.00\%
661372	LAMTCA11	Lamont	Kern	719	-	103,911	0.00\%
209223	SKTNCA14	Stockton Redwood	San Joaquin	1471	-	102,554	0.00\%
916541	RCKLCA01	Stanford Ranch	Placer	3201	-	102,471	0.00\%
209181	JCSNCA01	Jackson	Amador	1451	-	102,215	0.00\%
530503	SHLKCA01	Shasta Lake	Shasta	342	-	101,712	0.00\%
209150	ANCMCA01	Angels Camp	Calaveras	809	-	100,528	0.00\%
530457	GRTWCA11	Georgetown	El Dorado	1339	40,908	100,410	40.74\%
707318	STHNCA11	St Helena	Napa	2372	-	99,871	0.00\%
619744	IMBHCA11	Imperial Beach	San Diego	2049	12,190	99,724	12.22\%
661392	SHFTCA11	Shafter	Kern	772	-	99,573	0.00\%
559228	THRRCA11	Three Rivers	Tulare	609	59,250	99,547	59.52\%
510004	BKLYCA01	Berkeley Bancroft	Alameda	8600	-	98,859	0.00\%
858771	RSFECA12	Rancho Santa Fe	San Diego	3255	-	98,303	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
760716	CRLSCA11	Carlsbad Harding	San Diego	2206	-	98,008	0.00\%
707327	UKIHCA12	Capella Ivanhoe	Mendocino	995	-	97,224	0.00\%
707295	GULLCA11	Gualala	Mendocino	1066	-	96,671	0.00\%
707309	MNRICA11	Monte Rio	Sonoma	518	-	96,663	0.00\%
209171	GALTCA11	Galt	Sacramento	1448	-	95,444	0.00\%
661388	RSMDCA11	Rosamond	Kern	1123	-	94,721	0.00\%
530487	PRDSCA12	Paradise Pines	Butte	1026	-	93,950	0.00\%
209234	VYSPCA11	Valley Springs	Calaveras	1100	14,574	92,954	15.68\%
714761	ORNGCA14	Orange West	Orange	3181	-	92,757	0.00\%
510001	ALBYCA11	Albany Solano	Alameda	6236	21,550	92,458	23.31\%
760764	PALACA11	Pauma Valley	San Diego	812	-	92,036	0.00\%
530483	ORLDCA11	Orland	Glenn	1400	-	91,937	0.00\%
707319	SNRSCA11	Los Alamos	Sonoma	2537	-	91,433	0.00\%
650016	HMBACA12	Half Moon Bay	San Mateo	2349	37,312	91,019	40.99\%
916482	ORVACA11	Orangevale	Sacramento	2287	39,700	90,970	43.64\%
707296	GUVLCA11	Guerneville	Sonoma	691	-	89,939	0.00\%
530440	CRNGCA12	Corning	Tehama	1179	-	89,716	0.00\%
707276	ARCTCA11	Arcata	Humboldt	1835	-	89,453	0.00\%
707281	BGVLCA11	Bridgeville	Humboldt	173	-	89,077	0.00\%
707311	NICECA11	Nice	Lake	465	-	88,610	0.00\%
510038	OKLDCA11	Oakland 45th OlympicCentral	Alameda	9172	-	88,471	0.00\%
661360	BKFDCA15	Bakersfield Mettler	Kern	299	-	88,208	0.00\%
805380	NIPMCA11	Nipomo	San Luis Obispo	999	-	88,020	0.00\%
209182	JMTWCA11	Jamestown	Tuolumne	800	-	86,889	0.00\%
408143	SNTCCA01	Santa Clara Spacepark	Santa Clara	4768	-	86,502	0.00\%
805378	MRBACA11	Morro Bay	San Luis Obispo	993	-	86,371	0.00\%
916467	LNCLCA11	Lincoln	Placer	840	-	85,884	0.00\%
707329	UPLKCA11	Upper Lake	Lake	388	-	83,640	0.00\%
707315	PNARCA11	Point Arena	Mendocino	597	26,725	83,477	32.01\%
707279	BDBACA11	Bodega Bay	Sonoma	336	-	83,346	0.00\%
559206	ORCVCA11	Orange Cove	Fresno	399	-	81,348	0.00\%
408136	SNMACA11	San Martin	Santa Clara	632	-	81,065	0.00\%
209240	YSMTCA11	Yosemite Main	Mariposa	529	-	79,884	0.00\%
530508	SDSPCA11	Soda Springs	Nevada	527	-	79,397	0.00\%


Wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab   Expenditures	Pct GO 133-D §0.7
310619	IGWDCA01	Inglewood	Los Angeles	5028	-	79,328	0.00\%
530427	ARSNCA11	Anderson	Shasta	1747	-	79,134	0.00\%
858785	SNDGCA15	SNDG Regents	San Diego	6954	-	79,119	0.00\%
559164	DINBCA01	Dinuba	Tulare	1352	-	78,090	0.00\%
707285	CBMTCA11	Cobb Mountain	Lake	317	-	77,134	0.00\%
209203	MRPHCA11	Murphys	Calaveras	818	-	76,963	0.00\%
559195	MNDTCA11	Mendota	Fresno	448	-	76,929	0.00\%
530535	GRVYCA12	Wildwood	Nevada	1442	13,769	76,597	17.98\%
530486	PRDSCA11	Paradise Main	Butte	1089	-	76,534	0.00\%
858768	POWYCA11	Poway Midland	San Diego	2729	-	76,457	0.00\%
831100	APTSCA12	Aptos	Santa Cruz	2864	6,466	76,438	8.46\%
916497	SCRMCA01	Sacramento Mn	Sacramento	6182	-	75,992	0.00\%
213625	LSANCA03	Madison 03 MA	Los Angeles	5572	-	75,499	0.00\%
209161	CTVLCA11	Coulterville	Mariposa	663	-	75,405	0.00\%
661403	BVSPCA11	Bear VIly Spring	Kern	334	-	74,992	0.00\%
661373	LEBCCA11	Lebec	Kern	386	-	74,689	0.00\%
559183	KGBGCA11	Kingsburg	Tulare	1028	-	74,271	0.00\%
925029	MORGCA12	Moraga	Contra Costa	1735	-	74,237	0.00\%
714804	SNANCA12	Santa Ana West SNAN Bolsa	Orange	2806	16,598	74,071	22.41\%
805381	OKVWCA11	Oakview	Ventura	620	-	73,441	0.00\%
916537	NSCRCA12	North Natomas	Sacramento	2047	-	72,922	0.00\%
707337	RTPKCA11	Rohnert Park	Sonoma	2121	-	72,712	0.00\%
661412	PLDLCA11	Palmdale East 47TH ST	Los Angeles	902	-	72,552	0.00\%
310618	HWTHCA01	Hawthorne	Los Angeles	5016	-	72,255	0.00\%
530509	STAHCA01	South Tahoe Sussex	El Dorado	2731	-	72,231	0.00\%
661376	MOJVCA01	Mojave	Kern	581	-	71,609	0.00\%
925081	CYTNCA11	Clayton	Contra Costa	1502	-	71,233	0.00\%
707287	CTTICA12	Cotati	Sonoma	1983	11,393	71,216	16.00\%
559226	TRBLCA11	Terra Bella	Tulare	417	-	70,772	0.00\%
530531	RDNGCA11	Redding Enterpr	Shasta	3279	18,119	70,508	25.70\%
858786	SNDGCA16	SNDG Mira Mesa	San Diego	5310	-	70,026	0.00\%
916476	NWCSCA11	Newcastle	Placer	924	-	69,872	0.00\%
559247	FRSNCA15	Fresno Woodward	Fresno	1076	-	69,414	0.00\%
831110	GNZLCA11	Gonzales	Monterey	542	-	68,897	0.00\%



Wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab   Expenditures	Pct GO 133-D §0.7
619794	SNYSCA12	San Ysidro	San Diego	1283	-	52,354	0.00\%
559243	MADRCA12	Madera Bonnadelli	Madera	369	-	52,283	0.00\%
714811	ANHMCA17	ANHM Hills	Orange	848	-	52,121	0.00\%
949706	BALBCA01	Balboa	Orange	2703	-	51,441	0.00\%
707286	CORDCA12	Cordelia	Solano	1340	-	51,378	0.00\%
707312	OCDNCA11	Occidental	Sonoma	599	-	49,970	0.00\%
661368	ERLMCA11	Earlimart	Tulare	332	-	49,860	0.00\%
916536	FLSMCA14	Folsom Blue Ravine	Sacramento	1768	39,374	49,751	79.14\%
925083	PLTNCA13	Pleasanton Hacienda	Alameda	1621	-	49,692	0.00\%
650043	PCFCCA11	Pacifica	San Mateo	3023	-	49,646	0.00\%
209177	HGSNCA11	Hughson	Stanislaus	531	-	49,456	0.00\%
805396	TMTNCA11	Templeton	San Luis Obispo	643	-	49,354	0.00\%
530433	BLRSCA12	Blairsden	Plumas	901	-	49,064	0.00\%
831123	SLNSCA14	Moro	Monterey	1095	-	48,454	0.00\%
925050	PSBGCA11	Pittsburg Bay Point Willow	Contra Costa	1095	-	48,373	0.00\%
831120	SLNSCA11	Hickory Salinas	Monterey	2176	-	47,742	0.00\%
530528	CNVYCA11	Central Valley	Shasta	1528	23,261	47,627	48.84\%
209185	LGRNCA12	LaGrande D Pedro	Stanislaus	859	-	47,257	0.00\%
619777	SNDGCA01	SNDG C Street	San Diego	5627	-	47,102	0.00\%
707307	MKVLCA11	McKinleyville	Humboldt	1103	9,736	46,892	20.76\%
530469	LSMLCA11	Los Molinos	Tehama	355	21,947	46,593	47.10\%
510080	HRCLCA11	Hercules Pinole	Contra Costa	2622	-	45,967	0.00\%
916526	RILNCA12	Rio Linda	Sacramento	1163	-	45,247	0.00\%
209236	WLLCCA11	Wallace	Calaveras	400	23,151	44,903	51.56\%
209241	YSMTCA12	El Portal	Mariposa	299	-	44,657	0.00\%
925077	SUNLCA11	Sunol	Alameda	191	-	44,606	0.00\%
209225	STCKCA11	Sutter Creek	Amador	697	-	44,477	0.00\%
650056	SNCRCA11	San Carlos	San Mateo	6590	-	44,154	0.00\%
559219	SPVLCA11	Springville	Tulare	751	-	44,138	0.00\%
408145	SNJSCA21	San Jose Junction	Santa Clara	6140	-	44,129	0.00\%
619719	CHVSCA12	Chula Vista Apache	San Diego	2258	5,956	44,012	13.53\%
530447	DTFLCA11	Alta Dutch Flats	Placer	538	-	43,835	0.00\%
530461	GRDLCA11	Gridley	Butte	797	-	43,743	0.00\%
661405	LKLACA11	Lake Los Angeles	Los Angeles	427	-	43,680	0.00\%


wc	cLLI	wc Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct ©0 133-D 80.7
209187	LGRDCA11	Le Grande	Merced	178	-	43,320	0.00\%
209201	MDSTCA04	Modesto Kingswood Curtis Salid	Stanislaus	1201		43,279	0.00\%
650051	PSCDCA11	Pescadero	San Mateo	565		43,093	0.00\%
805390	SNMICA11	Santa Margarita	San Luis Obispo	540		42,927	0.00\%
559210	PXLYCA11	Pixley	Tulare	273		42,836	0.00\%
310613	ELSGCA12	El Segundo Douglas	Los Angeles	4029		42,748	0.00\%
805363	BRDLCA90	Bradley	Monterey	495	-	42,059	0.00\%
530463	HMWDCA11	Homewood	El Dorado	1117	-	41,885	0.00\%
209190	LCFRCA11	Lockeford	San Joaquin	241	-	40,677	0.00\%
858727	DLMRCA12	Del Mar	San Diego	5494	-	40,412	0.00\%
209155	BVLYCA11	Bear Valley	Calaveras	436	-	40,343	0.00\%
559242	BURLCA11	Burrell	Fresno	88	-	40,135	0.00\%
949749	LGNGCA12	Laguna Niguel	Orange	3371	-	40,081	0.00\%
760712	CLXCCA12	Calexico	Imperial	1886	-	40,026	0.00\%
209227	THTNCA11	Thornton	San Joaquin	100	-	39,916	0.00\%
530474	MTSHCA12	Mount Shasta	Siskiyou	1180	-	39,449	0.00\%
661404	LEBCCA12	Pine Mountain	Kern	678	-	39,041	0.00\%
925022	LFYTCA11	Lafayette	Contra Costa	2283	-	38,824	0.00\%
650026	MLBRCA11	Millbrae	San Mateo	2613	-	38,267	0.00\%
707293	FTUNCA11	Fortuna	Humboldt	1102	-	38,148	0.00\%
530520	WTLDCA12	Wheatland	Sutter	497	-	37,759	0.00\%
209211	PLNDCA11	Planada	Merced	279	-	37,551	0.00\%
209204	NWMNCA12	Newman	Stanislaus	549	-	37,512	0.00\%
707308	MRNDCA11	Miranda	Humboldt	286	-	37,236	0.00\%
760801	WNSPCA12	Warner Springs	San Diego	373	-	37,095	0.00\%
760742	HLVLCA11	Holtville	Imperial	458	-	36,118	0.00\%
707275	ANGWCA11	Angwin	Napa	591	-	36,041	0.00\%
949791	SJCPCA12	S J Capistrano	Orange	4048	-	35,832	0.00\%
714809	YRLNCA12	Gypsum Canyon	Orange	562	-	34,901	0.00\%
619784	SNDGCA14	SNDG Tennyson	San Diego	2848	-	34,696	0.00\%
619783	SNDGCA12	SNDG Market Street	San Diego	2184	-	33,865	0.00\%
415076	STBHCA11	Stinson Beach	Marin	1202	-	33,640	0.00\%
831103	BNLMCA11	Ben Lomond	Santa Cruz	579	-	33,465	0.00\%
530432	BGGSCA11	Biggs	Butte	249	-	33,362	0.00\%



wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
619766	PNVYCA11	Pine Valley	San Diego	247	-	25,547	0.00\%
831116	SCVYCA01	Scotts Valley	Santa Cruz	1367	-	25,197	0.00\%
831124	SNARCA11	San Ardo	Monterey	119	-	25,111	0.00\%
831107	CSVLCA11	Castroville	Monterey	1012	-	24,845	0.00\%
619754	NTCYCA11	National City Highland	San Diego	1415	-	24,742	0.00\%
858763	PCBHCA11	Hornblend	San Diego	548	-	24,330	0.00\%
530434	BCWYCA11	Brockway	Placer	924	-	23,972	0.00\%
209214	RVRBCA11	Riverbank	Stanislaus	992	-	23,589	0.00\%
818665	CLBSCA50	Calabasas Los Virgenes	Los Angeles	1058	-	23,283	0.00\%
619852	RNSDCA11	Rancho San Diego	San Diego	814	-	23,052	0.00\%
949776	SNCLCA12	San Clemente	Orange	2602	-	22,980	0.00\%
530437	CHLNCA11	Challange	Yuba	1149	-	22,682	0.00\%
559167	FVPNCA11	Five Points	Fresno	151	-	22,427	0.00\%
650021	LAHNCA11	La Honda	San Mateo	389	-	22,156	0.00\%
530455	FRGLCA11	French Gulch	Shasta	82	-	21,966	0.00\%
925008	BTISCA11	Bethel Island	Contra Costa	265	-	21,915	0.00\%
559163	DLRYCA11	Del Rey	Fresno	143	-	21,705	0.00\%
831113	MARNCA11	Marina	Monterey	1358	-	21,687	0.00\%
619746	JCMBCA11	Jacumba	San Diego	371	-	21,592	0.00\%
831135	SNLCCA11	San Lucas	Monterey	43	-	21,562	0.00\%
415073	SNRFCA11	Parkway	Marin	2956	-	21,352	0.00\%
530458	GRBRCA11	Gerber	Tehama	182	-	20,926	0.00\%
650046	PLALCA12	Palo Alto South	Santa Clara	4001	-	20,911	0.00\%
530480	NSJNCA11	North San Juan	Nevada	490	-	20,740	0.00\%
916491	PLGVCA12	Pleasant Grove	Placer	160	-	20,645	0.00\%
925082	BSRNCA70	Bishop Ranch	Contra Costa	1443	-	20,613	0.00\%
916533	RNMRCA11	Rancho Murietta	Sacramento	523	-	20,188	0.00\%
707333	WEOTCA11	Weott	Humboldt	63	-	20,157	0.00\%
760743	IMPRCA11	Imperial	Imperial	559	-	19,900	0.00\%
530436	CMPVCA11	Camptonville	Yuba	216	-	19,650	0.00\%
530446	DNSMCA11	Dunsmuir	Siskiyou	413	-	19,473	0.00\%
530507	SMAVCA11	Smartsville	Yuba	318	-	19,293	0.00\%
530492	PTOLCA01	Portola	Plumas	982	-	19,236	0.00\%
707283	CLOKCA11	Clear Lake Oaks	Lake	536	-	19,221	0.00\%


Wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
310628	LSANCA07	LSAN Airport	Los Angeles	7220	-	19,121	0.00\%
805355	AVBHCA11	Avila Beach	San Luis Obispo	337	-	19,066	0.00\%
530445	DNGNCA12	Dunnigan	Yolo	113	-	18,518	0.00\%
559178	HURNCA11	Huron	Fresno	294	-	18,336	0.00\%
415075	SSLTCA11	Sausalito Larkspur	Marin	1737	-	17,833	0.00\%
415048	PRSNCA11	Point Reyes	Marin	825	-	17,794	0.00\%
415019	IGNCCA12	Ignacio	Marin	1539	-	17,718	0.00\%
209248	MDSTCA05	Modesto Tally	Stanislaus	634	-	17,275	0.00\%
707299	HYVLCA11	Hydesville	Humboldt	265	-	17,119	0.00\%
760856	NILDCA12	Ninland Bombay Beach	Imperial	98	-	16,814	0.00\%
415020	INVRCA11	Inverness	Marin	447	-	16,784	0.00\%
805386	PIRUCA11	Piru	Ventura	145	-	15,616	0.00\%
408139	SNVACA11	Mathilda Sunneyvale	Santa Clara	1662	-	15,573	0.00\%
530425	ALGHCA11	Alleghaney	Sierra	47	-	15,482	0.00\%
530471	LLTNCA11	Loyalton	Plumas	546	-	15,172	0.00\%
530466	LSTNCA11	Lewiston	Trinity	508	4,855	14,930	32.52\%
530448	EKCKCA11	Elk Creek	Glenn	100	-	14,917	0.00\%
209202	MKHLCA12	Mokelumne Hill	Calaveras	183	-	14,871	0.00\%
760855	NILDCA11	Niland Main	Imperial	83	-	14,460	0.00\%
559224	SRFRCA11	Stratford	Kings	85	-	14,407	0.00\%
559186	LATNCA11	Laton	Fresno	182	-	14,000	0.00\%
530524	YREKCA11	Yreka	Siskiyou	1314	-	13,848	0.00\%
619723	CRNDCA11	Coronado	San Diego	1724	10,589	13,839	76.52\%
530430	BNGRCA11	Bangor	Butte	335	-	13,720	0.00\%
209238	WANACA11	Wawana	Mariposa	267	-	13,352	0.00\%
530518	WEEDCA01	Weed	Siskiyou	847	-	13,016	0.00\%
619851	JAMLCA60	Jamul	San Diego	322	-	13,013	0.00\%
858854	RNPSCA11	Rancho Penasquitos	San Diego	1446	-	12,207	0.00\%
707322	ANNPCA11	Annapolis	Sonoma	71	-	12,067	0.00\%
559156	CMNLCA11	Camp Nelson	Tulare	680	-	11,900	0.00\%
707301	LKBRCA11	Lake Berryessa	Napa	188	-	11,886	0.00\%
831122	SLNSCA13	Hunter	Monterey	680	-	11,406	0.00\%
707324	SUISCA11	Suisun City	Solano	345	-	11,330	0.00\%
415033	NICSCA11	Nicasio	Marin	250	-	11,117	0.00\%


wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	Pct GO 133-D §0.7
530505	SRCYCA11	Sierra City	Sierra	430	-	10,677	0.00\%
530517	VINACA12	Vina	Tehama	69	-	10,211	0.00\%
530462	HMCYCA11	Hamilton City	Glenn	145	-	9,970	0.00\%
209162	CWLDCA12	Crows Landing	Stanislaus	91	-	9,812	0.00\%
760796	SHSHCA11	Shoshone	San Bernandino	137	-	9,499	0.00\%
707303	LOLTCA11	Lolita	Humboldt	123	-	9,355	0.00\%
530444	DWNVCA11	Downieville	Sierra	239	-	8,963	0.00\%
530529	MTAGCA11	Montague	Siskiyou	534	-	8,569	0.00\%
831121	SLNSCA12	Glenview	Monterey	556	-	8,556	0.00\%
707288	ELK CA11	Elk	Mendocino	211	8,060	8,477	95.08\%
530465	KYBRCA11	Kyburz	El Dorado	60	-	8,164	0.00\%
530516	TRUCCA12	North Star	Placer	606	-	7,483	0.00\%
209184	KNFYCA11	Knights Ferry	Stanislaus	141	4,871	7,234	67.33\%
831127	SNJNCA11	San Juan Baustista	San Benito	384	-	7,077	0.00\%
818620	LACNCA11	La Canada Oak Grove	Los Angeles	14	-	7,013	0.00\%
661369	EDWRCA01	Edwards	Kern	137	-	6,702	0.00\%
760753	MTPSCA11	Mountain Pass	San Bernandino	19	-	6,590	0.00\%
707313	PPWDCA11	Pepperwood	Humboldt	75	-	6,529	0.00\%
818606	BRBNCA13	Burbank Thornton	Los Angeles	755	-	6,093	0.00\%
530511	STAHCA12	South Tahoe Tamarack	El Dorado	128	-	6,042	0.00\%
760738	FRCKCA11	Furnace Creek	San Bernandino	140	-	5,860	0.00\%
530513	STFRCA11	Stonyford	Colusa	138	-	5,436	0.00\%
530473	MRDNCA11	Meridan	Sutter	150	-	5,420	0.00\%
530496	RCVACA11	Richvale	Butte	107	-	5,405	0.00\%
760714	CMPDCA01	Camp Pendleton	San Diego	107	-	5,250	0.00\%
831140	TRPSCA11	Tres Pinos	San Benito	214	-	4,801	0.00\%
530431	BEALCA11	Beale	Yuba	78	-	4,622	0.00\%
949806	MSVJCAAT	Mission Viejo	Orange	1889	-	4,533	0.00\%
530506	SRVLCA11	Sierraville	Sierra	162	-	4,145	0.00\%
559189	LEMRCA12	Lemore Wyman	Kings	87	-	3,883	0.00\%
415005	TBRNCA11	Tiburon	Marin	1686	-	3,569	0.00\%
530460	GRNDCA13	Grenada	Siskiyou	81	-	3,010	0.00\%
714805	TUSTCA70	Tustin 70	Orange	658	-	2,698	0.00\%
530488	PSKNCA11	Paskenta	Tehama	101	-	2,639	0.00\%


Table 7.19

Table 7.19   AT\&T CALIFORNIA   2018-2019 SERVICE QUALITY METRICS IN WIRE CENTERS RECEIVING 133-D §9.7 "ALTERNATIVE INVESTMENTS" AND OTHER REHAB EXPENDITURES (Sorted by Percent Cleared within 24 Hours)											
wc	CLLI	WC Name	County	Jan 2019 Access Lines	GO 133-D §9.7 "Alternative Investments"	Other Rehab Expenditures	$\begin{aligned} & \text { OOS per } 100 \\ & \text { ALs per month } \end{aligned}$	$\begin{aligned} & \text { OOS }>24 \text { per } \\ & 100 \text { ALs per } \\ & \text { month } \end{aligned}$	$\begin{aligned} & \text { Pct Cleared } \\ & \text { w/in } 24 \text { hours } \\ & \text { (unadj) } \end{aligned}$	$\begin{aligned} & \text { \# days to clear } \\ & 90 \% \text { OOS } \\ & \text { (unadj) } \end{aligned}$	Avg OOS   Duratn   (mins)
530431	BEALCA11	Beale	Yuba	78	-	4,622	-	0		5.19	7471
760753	MTPSCA11	Mountain Pass	San Bernandino	19	-	6,590	2	2		7.16	7123
707333	WEOTCA11	Weott	Humboldt	63	-	20,157	1	1	-	6.67	4612
760738	FRCKCA11	Furnace Creek	San Bernandino	140	-	5,860	1	1	0	43.29	21026
760705	BAKRCA11	Baker	San Bernandino	114	-	1,308	2	2	0	7.05	7325
707322	ANNPCA11	Annapolis	Sonoma	71	-	12,067	3	2	0	18.77	11056
760796	SHSHCA11	Shoshone	San Bernandino	137	-	9,499	4	4	0	18.71	16171
530456	GZLLCA11	Gazelle	Siskiyou	44	-	-	2	1	0	4.81	4693
209240	YSMTCA11	Yosemite Main	Mariposa	529	-	79,884	1	1	0	11.12	7411
209241	YSMTCA12	El Portal	Mariposa	299	-	44,657	2	2	0	14.32	9764
209238	WANACA11	Wawana	Mariposa	267	-	13,352	1	1	0	9.67	8295
530455	FRGLCA11	French Gulch	Shasta	82	-	21,966	5	4	0	77.86	26999
530513	STFRCA11	Stonyford	Colusa	138	-	5,436	2	2	0	12.98	10459
530465	KYBRCA11	Kyburz	El Dorado	60	-	8,164	2	2	0	10.71	8990
831101	BGSRCA11	Big Sur	Monterey	389	-	122,197	4	3	0	5.76	4449
707315	PNARCA11	Point Arena	Mendocino	597	26,725	83,477	2	2	0	12.38	7611
707278	BLLKCA11	Blue Lake	Humboldt	236	-	58,019	3	2	0	8.84	8663
559219	SPVLCA11	Springville	Tulare	751	-	44,138	3	2	0	10.21	6456
559152	ASMTCA11	Sequoia Ash Mtn	Fresno	82	-	54,554	3	2	0	4.84	5577
530425	ALGHCA11	Alleghaney	Sierra	47	-	15,482	4	4	0	7.28	5138
707288	ELK CA11	Elk	Mendocino	211	8,060	8,477	3	2	0	11.57	6991
209155	BVLYCA11	Bear Valley	Calaveras	436	-	40,343	2	1	0	34.84	14786
209185	LGRNCA12	LaGrande D Pedro	Stanislaus	859	-	47,257	3	2	0	9.97	5892
530511	STAHCA12	South Tahoe Tamarack	El Dorado	128	-	6,042	2	1	0	9.42	7462
559156	CMNLCA11	Camp Nelson	Tulare	680	-	11,900	2	2	0	8.98	6236
530466	LSTNCA11	Lewiston	Trinity	508	4,855	14,930	2	2	0	11.27	6539
707295	GULLCA11	Gualala	Mendocino	1066	-	96,671	2	2	0	11.01	6949
707301	LKBRCA11	Lake Berryessa	Napa	188	-	11,886	3	3	0	9.86	5869
530448	EKCKCA11	Elk Creek	Glenn	100	-	14,917	4	3	0	8.09	5305
707316	PTVYCA11	Potter Valley	Mendocino	528	-	272,174	4	3	0	13.29	7839
760856	NILDCA12	Ninland Bombay Beach	Imperial	98	-	16,814	2	2	0	5.50	4723
707313	PPWDCA11	Pepperwood	Humboldt	75	-	6,529	3	2	0	5.17	3732
760855	NILDCA11	Niland Main	Imperial	83	-	14,460	3	2	0	6.02	3662
530430	BNGRCA11	Bangor	Butte	335	-	13,720	4	3	0	11.30	5919
661401	WLBSCA11	Walker Basin	Kern	447	-	61,856	4	3	0	5.42	3815
619851	JAMLCA60	Jamul	San Diego	322	-	13,013	2	1	0	7.72	5368
707280	BNVLCA11	Boonville	Mendocino	645	12,118	121,299	3	2	0	11.62	6784




- $\wedge$ 人
1
mix



No
GO 13

County
EI Dorado
Butte
Humboldt
Kings
San Diego
Mariposa
Fresno
EI Dorado
Calaveras
San Mateo
Sonoma
Ventura
San Diego
Fresno
San Diego
Sonoma
San Diego
San Diego
San Diego
Mendocio
Monterey
Shasta
Tulare
Calaveras
Stanislaus
Ventura
Shasta
Monterey
Butte
San Mateo
San Diego
Tuolumne
Kern
Tulare
Placer
Siskiyou
San Diego
Tehama
Los Angeles
Ventura
Sonoma
Calaveras
Sonoma
San Diego
San Luis Ob
Placerville Niagara
Oroville East
Miranda
Avenal
Fallbrook
Coulterville
Burrell
Murphys
Moss Beach
Moss Beach
Monte Rio
Dulzura
Laton
Warner Springs
Geyersville
Julian
Campo
Pauma Valley
Mendocino
Bradley
Tipton
Mokelumne Hill
Crows Landing
Crows Landing
Oakview
Oakview
Anderson
San Ardo
Biggs
La Honda
SNDG University
Groveland
Bakersfield Mettler
Terra Bella
Nunsmuir
San Ysidro Cottonwood N Valley Ford Healdsburg


$\qquad$ | $\bar{\top}$ |
| :---: |

-



 $\stackrel{\Gamma}{\vdots}$ PALACA11
 BRDLCA90
CNVYCA11
 MKHLCA12








交 N | $\stackrel{\rightharpoonup}{s}$ |
| :--- | 둥

$\vdots$
$\vdots$
$z$
$z$


$\bar{\circ}$

 응 59154
760735 $\qquad$ 59242 $\qquad$ 웅 웅 $\qquad$ $\stackrel{\circ}{\circ}$ 등 $\stackrel{\infty}{\stackrel{\infty}{4}} \stackrel{n}{\hat{N}}$
登 우웅 엉
$\qquad$ ＂－誌 Nㅜ웅 둥 $\stackrel{\infty}{\stackrel{\infty}{N}} \stackrel{n}{\circ}$
 충哲茄志
 ® N N 둥

Hill



$\qquad$











IMBHCA11
PCBHCA11

$\stackrel{\rightharpoonup}{c}$
$\vdots$
$\vdots$
0
0
0
0
0




「
0
0
0






\％

$\qquad$ No















 す吉 $\stackrel{\leftarrow}{\bar{\circ}} \frac{\pi}{5}$ ㄴN 응 웅 | N |
| :--- |
| N |
| © |
| ò | No 응 N






$\qquad$


RCVACA11















 STCKCA11
SNADCA11





 PXLYCA11

 HURNCA11




WC	CLLI	WC Name	County	Jan 2019   Access   Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	OOS per 100 ALs per month	OOS>24 per 100 ALs per month	Pct Cleared w/in 24 hours (unadj)	$\begin{gathered} \text { \# days to clear } \\ 90 \% \text { OOS } \\ \text { (unadj) } \\ \hline \end{gathered}$	Avg OOS Duratn (mins)
209233	TWHRCA11	Twain Harte	Tuolumne	1607	-	122,275	2	1	0	8.47	4730
510013	ELSBCA11	Rich Appian Way El Sobrante	Contra Costa	3219	-	150,753	2	1	0	7.37	4484
760708	BRWLCA11	Brawley	Imperial	1759	-	108,509	1	1	0	6.17	3487
650046	PLALCA12	Palo Alto South	Santa Clara	4001	-	20,911	1	1	0	7.27	4484
559167	FVPNCA11	Five Points	Fresno	151	-	22,427	3	2	0	6.75	3848
707312	OCDNCA11	Occidental	Sonoma	599	-	49,970	2	1	0	8.53	4750
707443	DIXNCA11	Dixon	Solano	1345	-	110,688	2	1	0	10.33	7298
650016	HMBACA12	Half Moon Bay	San Mateo	2349	37,312	91,019	1	1	0	8.40	4429
559215	RVDLCA11	Riverdale	Fresno	336	-	56,131	4	2	0	6.62	3842
858854	RNPSCA11	Rancho Penasquitos	San Diego	1446	-	12,207	0	0	0	10.55	5929
530531	RDNGCA11	Redding Enterpr	Shasta	3279	18,119	70,508	1	1	0	8.76	5025
559163	DLRYCA11	Del Rey	Fresno	143	-	21,705	2	1	0	10.61	5521
530438	CHICCA01	Chico Main	Butte	10221	6,955	287,579	1	1	0	6.73	4497
619719	CHVSCA12	Chula Vista Apache	San Diego	2258	5,956	44,012	1	0	0	7.27	4589
707335	WNDSCA11	Windsor	Sonoma	1693	-	134,483	1	1	0	11.08	7176
831118	SLDDCA11	Soledad	Monterey	947	-	148,989	1	1	0	4.94	2907
661392	SHFTCA11	Shafter	Kern	772	-	99,573	2	1	0	4.45	2901
408130	SNJSCA12	San Jose Dial Way	Santa Clara	13069	36,755	282,004	1	1	0	7.50	4516
707279	BDBACA11	Bodega Bay	Sonoma	336	-	83,346	2	1	0	9.56	5987
323638	LSANCA23	LSAN Capitol	Los Angeles	7035	-	207,342	1	1	0	7.36	4186
415058	SNFCCA01	SF Bush Pine	San Francisco	14854	-	319,373	1	0	0	6.28	3665
760716	CRLSCA11	Carlsbad Harding	San Diego	2206	-	98,008	1	1	0	7.89	4450
626611	ELMNCA01	El Monte	Los Angeles	9210	7,436	260,083	1	1	0	7.77	4360
619752	LAMSCA01	La Mesa	San Diego	5791	29,460	338,207	1		0	6.79	4025
619729	ELCJCA11	El Cajon	San Diego	4004	4,702	326,642	1	1	0	6.53	3873
626602	ARCDCA11	Arcadia	Los Angeles	4800	-	168,770	1	1	0	7.97	4360
760800	VISTCA12	Vista	San Diego	5720	-	393,191	1	1	0	6.63	4407
707317	RIDECA11	Rio Dell	Humboldt	238	18,122	32,097	1	0	0	4.10	2423
707326	TRNDCA11	Trinidad	Humboldt	296	-	27,229	2	1	0	4.43	3040
619852	RNSDCA11	Rancho San Diego	San Diego	814	-	23,052	1	0	0	6.58	4616
650045	PLALCA02	Palo Alto Main	Santa Clara	10518	-	120,501	1	1	0	7.20	4462
707311	NICECA11	Nice	Lake	465	-	88,610	3	2	0	12.26	5911
805400	VNTRCA02	Ventura Fir	Ventura	2365	-	163,802	1	1	0	19.30	8466
707302	LKPTCA02	Lakeport	Lake	2039	-	190,486	2	1	0	15.87	7025
530487	PRDSCA12	Paradise Pines	Butte	1026	-	93,950	3	2	0	12.43	7823
559188	LEMRCA11	Lemore Main	Kings	1200	15,802	156,276	2	1	0	6.11	3645
831109	GNFDCA11	Green Field	Monterey	940	-	185,052	1	1	0	4.86	2959
530429	AUBNCA11	Auburn Placer Hills	Placer	1530	-	56,761	2	1	0	7.43	4049
415073	SNRFCA11	Parkway	Marin	2956	-	21,352	1	1	0	7.46	3993
530474	MTSHCA12	Mount Shasta	Siskiyou	1180	-	39,449	1	1	0	4.16	3652
510080	HRCLCA11	Hercules Pinole	Contra Costa	2622	-	45,967	1	1	0	7.63	4276
530458	GRBRCA11	Gerber	Tehama	182	-	20,926	3	2	0	4.85	3605
707306	MDTWCA11	Middletown	Lake	874	-	172,164	2	1	0	9.58	5062
209237	WTFRCA11	Waterford	Stanislaus	758	-	108,950	3	2	0	7.87	4197
619782	SNDGCA11	SNDG College	San Diego	2566	-	157,196	1	1	0	8.12	5692


WC	CLLI	WC Name	County	Jan 2019   Access Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	OOS per 100 ALs per month	OOS>24 per 100 ALs per month	Pct Cleared w/in 24 hours (unadj)	$\begin{aligned} & \text { \# days to clear } \\ & 90 \% \text { OOS } \\ & \text { (unadj) } \end{aligned}$	Avg OOS   Duratn   (mins)
909741	HGLDCA11	Highland	San Bernandino	2208	-	260,788	2	1	0	6.99	4366
209209	PNCRCA11	Pinecrest	Tuolumne	921	-	60,972	1	1	0	5.58	4152
951775	RVSDCA11	Woodcrest	Riverside	2640	-	205,180	1	1	0	6.68	3830
650051	PSCDCA11	Pescadero	San Mateo	565	-	43,093	1	1	0	7.19	4388
209177	HGSNCA11	Hughson	Stanislaus	531	-	49,456	2	1	0	8.46	4949
530471	LLTNCA11	Loyalton	Plumas	546	-	15,172	1	1	0	3.39	2537
530435	BTCYCA11	Butte City	Glenn	109	-	423	2	1	0	5.33	3160
415027	MLVYCA01	Mill Valley	Marin	3821	-	63,792	1	1	0	6.07	3621
858786	SNDGCA16	SNDG Mira Mesa	San Diego	5310	-	70,026	1	0	0	6.57	3903
559180	IVNHCA11	Ivanhoe	Tulare	441	-	193,296	3	2	0	5.05	2982
858770	RBRNCA11	Rancho Bernardo	San Diego	4178	-	187,328	1	0	0	6.57	3863
831102	BLCKCA11	Boulder Creek	Santa Cruz	1051	51,244	106,508	2	1	0	7.00	4119
949722	CRDMCA11	Corona Del Mar	Orange	6350	-	132,880	1	1	0	4.93	3216
530428	AUBNCA01	Auburn Main	Placer	5789	-	172,598	2	1	0	7.45	4019
831112	KGCYCA11	King City	Monterey	1327	-	212,905	2	1	0	5.58	3242
530447	DTFLCA11	Alta Dutch Flats	Placer	538	-	43,835	4	2	0	8.25	4723
323641	LSANCA34	LSAN Angeles	Los Angeles	9593	8,133	374,465	1	1	0	7.60	4338
949808	RSMGCA11	R S Margarita	Orange	2003	-	28,744	1	0	0	6.27	5195
760742	HLVLCA11	Holtville	Imperial	458	-	36,118	2	1	0	6.41	3387
707321	SBSTCA11	Sebastapol	Sonoma	2794	32,610	351,030	2	1	0	8.99	4995
530463	HMWDCA11	Homewood	El Dorado	1117	-	41,885	1	0	0	6.51	3502
707334	WLTSCA12	Willits	Mendocino	2049	-	302,155	2	1	0	10.44	6200
831106	CRVYCA11	Carmel Valley	Monterey	1039	-	61,473	2	1	0	5.26	3258
707303	LOLTCA11	Lolita	Humboldt	123	-	9,355	2	1	0	3.96	2451
323642	LSANCA35	LSAN Montebello	Los Angeles	7620	-	261,864	1	1	0	6.93	3749
707337	RTPKCA11	Rohnert Park	Sonoma	2121	-	72,712	1	0	0	9.72	5731
530481	NYUBCA11	North Yuba	Yuba	515	-	29,786	3	2	0	6.27	3534
916491	PLGVCA12	Pleasant Grove	Placer	160	-	20,645	4	2	0	6.34	3537
415075	SSLTCA11	Sausalito Larkspur	Marin	1737	-	17,833	1	1	0	5.81	3393
530522	WNTRCA11	Winters	Yolo	734	16,119	63,060	2	1	0	10.47	5081
949791	SJCPCA12	S J Capistrano	Orange	4048	-	35,832	1	1	0	6.06	4638
530521	WLWSCA11	Willows	Glenn	989	-	53,383	2	1	0	6.69	3850
415072	SNRFCA01	San Rafael Main	Marin	6998	-	172,731	1	1	0	8.36	4740
530460	GRNDCA13	Grenada	Siskiyou	81	-	3,010	2	1	0	4.49	2607
661351	AGDLCA11	Agua Dulce	Los Angeles	456	-	311,170	2	1	0	4.88	3410
760792	SNMCCA11	San Marcos	San Diego	4889	1,511	419,648	1	1	0	7.99	4290
408138	SNVACA01	Carrol Sunnyvale	Santa Clara	7759	6,195	147,584	1	1	0	6.99	3934
559157	CRTHCA11	Caruthers	Fresno	383	-	29,715	4	2	0	5.89	3415
209176	HERLCA11	Herald	Sacramento	273	-	62,776	3	2	0	7.75	3829
805354	ATSCCA11	Atascadero	San Luis Obispo	2312	-	169,359	1	1	0	4.40	2703
530514	THCYCA01	Tahoe City	Placer	2438	-	52,998	1	0	0	5.49	3194
805378	MRBACA11	Morro Bay	San Luis Obispo	993	-	86,371	1	1	0	4.24	2510
909773	RILTCA11	Rialto	San Bernandino	3898	-	381,712	2	1	0	6.08	3611
310618	HWTHCA01	Hawthorne	Los Angeles	5016	-	72,255	1	1	0	6.88	3868
559235	VISLCA11	Visalia Main	Tulare	6971	-	641,327	1	1	0	5.18	3328





000000000000000000000000000000000000000000000

1
2nme


$\stackrel{\text { 鬲 }}{\substack{\text { G }}}$


ALT INVES
$\begin{array}{l}\text { Jan } 2019 \\ \text { Access } \\ \text { Lines }\end{array}$


$\stackrel{\circ}{\circ}$ Alameda
Santa Clara

San Luis Obispo Santa Cruz
San Joaquin

 Marin
Tuolumne Imperial
San Joaquin San Joaquin
Nevada Ventura
Kern $\stackrel{\pi}{\stackrel{\pi}{5}}$ （1）

 $\stackrel{\text { ® }}{\stackrel{0}{\circ}}$




$\qquad$ Wheatland San Jose Foxworthy Pismo Beach
Lower Lake Pawer Lake Santa Cruz
Stockton Ashley LSAN Airport Oceanside Mission Arcata
Tiburon Jamestown El Centro
Escalon Truckee Frazier Park St Helena
 Coyote Wells
Fullerton Escondido co

 Inglewood Watsonville













 N















 5
$\vdots$
$\vdots$
0
$\vdots$
$\vdots$
$\vdots$
$\vdots$京䕀 $\stackrel{o}{\circ}$ 응 ค～へ
 ल 옹 N N I Y 긍 N N N すin N $\stackrel{\sim}{\sim}$ N $\infty$
$\stackrel{N}{N}$ N
ô
$\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\circ}{\infty}$ Nㅜㅇ 응 $\stackrel{6}{5}$ 산 त




## 000000000000000000000000000000000000000000000




$\qquad$

Lamont
Poway Midland
Nicasio
LSAN Melrose
Stockton Redwood
lone
Balboa
Marysville
LSAN Sunset
Oakland 45th OlympicCentral
Carlsbad La Costa
Orland
Ben Lomond
Buena Park
Irvine
Kelseyville
Tustin 11
Earlimart
Santa Rosa Main
Napa
Santee
Modesto Kellog South Ceres
San Geronimo
Oakland Franklin
Turlock
Oakdale
Corning
Los Banos
Templeton
Calexico
LSAN Pleasant
LSAN Webster
Fontana
Beverly Hills
Baywood Park
Orange Cove
Yuba City Marysville
Wasco
LSAN Clinton
Yreka
Stockton Main
Hanford
Delano
Live Oak





San Mateo
Merced
Los Angeles
Plumas
Sierra
Los Angeles
Riverside
San Luis Obispo
Plumas
San Francisco
Orange
Monterey
San Mateo
Los Angeles
Sutter
Contra Costa
Marin
San Joaquin
Los Angeles
Stanislaus
Los Angeles
Butte
Merced
San Francisco
Sacramento
San Benito
Los Angeles
Los Angeles
Tehama
Monterey
Tulare
Ventura
Kern
Los Angeles
San Mateo
Los Angeles
Orange
Sacramento
Solano
Humboldt
Contra Costa
Fresno
Alameda
Kern
Fresno
Fra




[^22]$\qquad$
$\qquad$ $\hat{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{7}$

$n$
$\stackrel{n}{5}$
$\stackrel{N}{\circ}$
$\infty$
$\infty$
 G N N
N
O

N N | $\circ$ |
| :--- | :--- | N

N.
ò

응 | $\infty$ |
| :---: |
| N |
| N |
| $\stackrel{N}{\top}$ |
|  |

 송

产 ¢守 $\stackrel{\circ}{\infty} \stackrel{\infty}{n_{\infty}}$ 웅 았
 $\begin{array}{ll}5 \\ \\ \\ 0 \\ 0 \\ 0 & 0 \\ 0\end{array}$ M 응
 잉앙 옹 N
on
N్
on
on Nis
${ }^{4} 1$




## 



 ®
ल̈
ले
N




Orange
San Luis Obispo San Joaquin
Madera Sacramento Imperial
Orange Tehama Santa Clara
Fresno Los Angeles Santa Cruz
Humboldt Los Angeles Kern Santa Clara
Sacramento
 Solano Joaquin Tehama Santa Clara

 응 Contra Costa Kern
Solano
Los Angeles

WC	CLLI	WC Name
831127	SNJNCA11	San Juan Baustista
916470	LOMSCA11	Loomis
916482	ORVACA11	Orangevale
510002	ALMDCA11	Alameda Central
714701	ANHMCA01	Anaheim Lemon
818656	SHOKCA01	Sherman Oaks
818662	VNNYCA02	Van Nuys
209236	WLLCCA11	Wallace
559245	FRSNCA14	Fresno West Highway City
949749	LGNGCA12	Laguna Niguel
831113	MARNCA11	Marina
805389	SNLOCA01	San Luis Obispo
209230	TRACCA11	Tracy
559243	MADRCA12	Madera Bonnadelli
916498	SCRMCA02	SCRM Ivanhoe
760743	IMPRCA11	Imperial
714811	ANHMCA17	ANHM Hills
559164	DINBCA01	Dinuba
530469	LSMLCA11	Los Molinos
408128	SNJSCA02	San Jose Main
559169	FRSNCA11	Fresno Baldwin
661394	SLMNCA11	Solemint
831126	SNCZCA11	Santa Cruz Capitola
707307	MKVLCA11	McKinleyville
818610	CNPKCA01	Canoga Park
661357	BKFDCA12	Bakersfield Main Fairview
530486	PRDSCA11	Paradise Main
408145	SNJSCA21	San Jose Junction
916454	FLSMCA13	Folsom El Dorado Hills
661407	SAGSCA11	Saugus
707324	SUISCA11	Suisun City
209227	THTNCA11	Thornton
530517	VINACA12	Vina
408114	MLPSCA11	Milpitas
209196	MRCDCA01	Merced
714709	BREACA12	Brea
925074	SNRMCA11	San Ramon
714760	ORNGCA13	Orange Olive
209211	PLNDCA11	Planada
831107	CSVLCA11	Castroville
925081	CYTNCA11	Clayton
661361	BKFDCA17	Bakersfield West Rosedale
707290	FRFDCA01	Fairfield
916502	SCRMCA13	SCRM Fruitridge
323634	LSANCA13	LSAN Plymouth


WC	CLLI	WC Name	County	Jan 2019   Access   Lines	GO 133-D §9.7   "Alternative Investments"	Other Rehab Expenditures	OOS per 100 ALs per month	OOS>24 per 100 ALs per month	Pct Cleared w/in 24 hours (unadj)	$\begin{gathered} \text { \# days to clear } \\ 90 \% \text { OOS } \\ \text { (unadj) } \end{gathered}$	Avg OOS Duratn (mins)
916497	SCRMCALR	Sequoia Pacific State	Sacramento	6182	-	75,992	1	0	1	5.14	3023
310622	LOMTCA11	Lomita	Los Angeles	5732	-	177,012	1	1	1	4.45	2627
661383	OLDLCA11	Export Oildale	Kern	2977	-	1,019,218	2	1	1	3.24	2278
831111	HLSTCA11	Hollister	San Benito	2923	-	60,953	1	1	1	4.10	2562
925085	DAVLCA13	Danville Tassajara 13	Contra Costa	2391	-	53,030	0	0	1	3.81	2439
714789	SNANCA11	Bristol	Orange	9617	73,863	264,596	1	0	1	5.26	2948
510017	HYWRCA01	Hayward Main	Alameda	7870	-	125,529	1	0	1	5.56	3165
650006	BRLNCA01	Burlingame	San Mateo	7936	72,737	106,149	1	0	1	4.37	2530
209171	GALTCA11	Galt	Sacramento	1448	-	95,444	1	1	1	5.49	2827
818652	RESDCA01	Reseda	Los Angeles	10038	19,900	602,866	1	1	1	4.02	2306
818621	LACRCA11	La Crescenta	Los Angeles	6224	-	402,615	1	1	1	4.03	2263
626650	PSDNCA11	Pasadena Mt Wilson Green	Los Angeles	12284	-	222,373	1	0	1	5.23	3042
650043	PCFCCA11	Pacifica	San Mateo	3023	-	49,646	1	1	1	4.09	2438
310659	SNPDCA01	San Pedro	Los Angeles	7437	-	403,536	1	1	1	4.76	2778
925007	BRWDCA12	Brentwood	Contra Costa	3696	-	129,956	1	0	1	3.20	2254
310615	GRDNCA01	Gardena	Los Angeles	11967	-	1,293,390	2	1	1	5.35	3370
707289	EURKCA01	Eureka	Humboldt	4799	-	127,638	1	0	1	4.00	2572
916501	SCRMCA12	SCRM Empire	Sacramento	4226	-	156,697	1	1	1	6.01	3264
916451	FROKCA11	Fair Oaks	Sacramento	7463	56,582	362,215	1	1	1	5.17	2829
661356	BKFDCA11	Bakersfield Empire	Kern	1142	-	501,216	2	1	1	3.38	2781
714767	PLCNCA11	Placentia	Orange	5397	-	476,847	1	1	1	5.38	3361
661359	BKFDCA14	Bakersfield Temple	Kern	6693	-	1,678,481	2	1	1	3.12	2199
925047	PLTNCA12	Pleasanton Main Hopyard	Alameda	4045	-	207,817	1	0	1	3.57	2192
559247	FRSNCA15	Fresno Woodward	Fresno	1076	-	69,414	1	0	1	4.48	2539
707293	FTUNCA11	Fortuna	Humboldt	1102	-	38,148	1	0	1	2.96	2991
916478	NHLDCA11	Edgewood N Highl	Sacramento	4053	31,539	368,641	1	1	1	5.06	3054
714703	ANHMCA12	Anaheim La Palma	Orange	1791	-	194,078	1	0	1	4.59	2550
559207	ORSICA11	Orosi	Tulare	757	-	134,780	3	1	1	4.22	2698
213627	LSANCA06	Union	Los Angeles	4504	-	182,016	1	0	1	3.66	2180
831119	SLNSCA01	Salinas Main	Monterey	5792	-	110,870	1	0	1	4.04	2336
949810	IRVNCA12	Spectrum Irvine	Orange	1708	-	948	0	0	1	6.10	2867
925041	OKLYCA11	Oakley	Contra Costa	1105	-	26,657	1	1	1	8.02	2959
916479	NSCRCA11	Wabash	Sacramento	7088	95,277	412,604	1	0	1	5.41	2948
818648	NORGCA11	Northridge	Los Angeles	10424	37,683	986,797	1	1	1	3.97	3626
310609	CMTNCA01	Compton	Los Angeles	9969	51,395	1,171,795	2	1	1	4.16	3058
209201	MDSTCA04	Modesto Kingswood Curtis Salic	Stanislaus	1201	-	43,279	1	0	1	5.10	3175
661376	MOJVCA01	Mojave	Kern	581	-	71,609	2	1	1	3.01	1845
510018	HYWRCA11	Hayward Depot	Alameda	5286	-	143,013	1	0	1	5.32	2810
916467	LNCLCA11	Lincoln	Placer	840	-	85,884	1	1	1	3.08	2115
661379	NHLLCA01	Newhall	Los Angeles	5371	-	634,278	1	0	1	3.57	2601
661408	CSTCCA11	Castaic	Los Angeles	3431	-	201,094	1	0	1	3.56	2459
559159	CLVSCA11	Clovis	Fresno	8311	19,168	881,838	2	1	1	3.90	2445
949725	CSMSCA11	Costa Mesa	Orange	5737	-	178,369	1	0	1	4.80	2592
408133	SNJSCA15	San Jose Evergreen San Felipe	Santa Clara	5113	-	360,280	1	1	1	3.55	2799
916519	WSCRCA11	Frontier	Sacramento	3690	-	164,566	1	0	1	5.03	2706

Ill

皆



## Summary and conclusions

Little has changed in the relationship between AT\&T California and its parent AT\&T Inc. over the 2018-19 period relative to where things stood in 2010-2017. As a relatively small - and increasingly less important - component of the massive AT\&T Inc., AT\&T California's financial condition and investment policies are largely subject to the parent company's control. The California ILEC entity has no independent ability to raise equity capital on its own and, at the moment, appears to have relatively limited debt on its books. Plant retirements and depreciation accruals have generally exceeded Gross Plant Additions on an annual basis, and the company's net Telecommunications Plant in Service (TPIS) - roughly equivalent to what would be considered its "rate base" under rate-of-return regulation - has eroded to only about \$5-billion, resulting in a Net-to-Gross book value ratio of roughly $13.7 \%$.

It is clear that AT\&T California has continued its policy of disinvesting in its California local network infrastructure. Moreover, a large portion of AT\&T California’s Gross Plant Additions continues to be directed toward expanding its ability to offer services like broadband Internet access and video, rather than core legacy circuit-switched POTS services.

There appears to be wide variation across all of AT\&T California's 615 wire centers as to the amount of new investment that has been directed at each of them, and ETI has not observed any specific pattern to explain this prioritization. There is no indication, for example, that investment dollars are being directed toward those wire centers that have been underperforming with respect to service quality or in their ability to meet the Commision's GO 133-C/D service quality standards.

Notably, while the demand for AT\&T California legacy POTS services have dropped by $76.4 \%$ over the 2010-2019 period, the company's operating revenues saw only a $31.6 \%$ decrease relative to their 2010 level. One key explanation for this appears to be AT\&T California's policy of effecting significant price increases for its legacy residential POTS services almost every year since the CPUC's adoption of the Uniform Regulatory Framework in 2006. AT\&T California residential flat-rate (POTS) prices have risen by $152 \%$, and for measured residential service, prices have jumped by $325 \%$. These large and persistent price increases - coupled with the general deterioration in service quality as discussed in Chapter 4A - are entirely consistent with what appears to be a "harvesting strategy" with respect to legacy circuit-switched services.
"Harvesting" of this sort works where the price elasticity of demand is sufficiently low that persistent price increases will still be profitable. The fact that AT\&T has been able to profitably implement this succession of annual rate increases for more than a decade since the de-tariffing of basic residential voice service raises serious questions as to whether competition has actually
developed to a point where continued regulatory protection of basic residential telephone service prices is no longer required or appropriate. In competitive markets, customers will normally respond to price increases by switching to substitute services or by purchasing less. Here, however, AT\&T's "harvesting" strategy is founded on the expectation that, while some customers will discontinue their service in response to the steadily increasing prices, there are still a sufficiently large number of customers who confront few if any actual competitive alternatives and/or who simply retain their AT\&T legacy POTS service due to inertia - they simply haven't gotten around to seeking out any alternatives.

Finally, and as we discussed in Chapter 4A, this same "harvesting" philosophy would also explain why AT\&T has failed to improve service quality for its POTS services at least to the point where the GO 133-C/D standards can be achieved. Where customers have competitive alternatives, they will respond to inferior service by "voting with their feet" and seeking out alternative suppliers. But if the market is not so competitive that customers face such limited choices, the provider has little financial incentive to direct its financial and other resources in this area.

> AT\&T's "harvesting" philosophy explains why AT\&T has failed to improve service quality for its POTS services at least to the point where the GO 133-C/D standards can be achieved, because the gains it can realize by raising prices and curtailing investment and maintenance far exceed any financial penalties it might suffer from persistently poor service quality.

## 8 FRONTIER CORPORATE AND CALIFORNIA FINANCIALS AND ILEC INVESTMENT POLICIES

## Principal observations and takeaways

- Having grossly overpaid Verizon for the 2016 California-Texas-Florida ("CTF") acquisition, Frontier assumed a massive debt burden that cannot be sustained.
- Most of that overpayment had been carried as "Goodwill" or "Other Intangibles" on Frontier's corporate balance sheet; by the end of 2019, all of that Goodwill and most of the Other Intangibles have been written off.
- By the end of 2019, Frontier's total debt was more than \$18.3-billion, and the Company's total debt service (interest and amortization) payments in 2019 were more than \$3.5-billion.
- Frontier's California customer base continued to dwindle, to the point where it has lost foughly $50 \%$ of the POTS access line customers it had acquired in the 2016 purchase.
- Frontier's net income declined following each successive acquisition, to the point where it has now been negative for seven consecutive quarters.
- Frontier's melt-down and ultimate Chapter 11 bankruptcy filing confirms the inescapable fact that Frontier had grossly overpaid Verizon for the CTF assets.
- Unlike AT\&T, which had raised its legacy flat-rate residential POTS rates by $152 \%$ since the onset of URF, Verizon's rates for this service had risen by only $31 \%$ as of the date of the sale to Frontier, and Frontier had not effected any rate increase since the acquisition throgh the end of 2019.
- Since acquiring the California ILEC from Verizon in 2016, Frontier continued to invest less in Gross Plant Additions than it took in retirements and depreciation accruals, resulting in a net disinvestment of $\$ 469.5$-million.


# FRONTIER CORPORATE AND CALIFORNIA FINANCIALS <br> AND ILEC INVESTMENT POLICIES 

## TABLE OF CONTENTS

A lot has happened to Frontier since our Phase 1 Report ..... 404
Verizon California had been experiencing customer drop-offs for years preceding the Frontier acquisition. ..... 413
Verizon California had been consistently disinvesting in its California local network infrastructure, and Frontier has been pursuing a similar strategy. ..... 418
The focus of Frontier California's capital investments over the 2016-2019 period ..... 422
Maintenance and rehabilitation expenses 2018-19 ..... 433
GO 133-D §9.7 Alternative Investments ..... 437
Summary and conclusions ..... 437

## Tables and Figures

Table 8.1: Frontier Communications Corp.: Customer Counts by Service Category, 2016-2019404
Table 8.2: $\quad$ Verizon/Frontier California Average Legacy Switched Access Lines in Service, 2010-2019 ..... 414
Table 8.3: Verizon/Frontier Operating Revenues Have Decreased, but by Far Less than the Decrease in Legacy Switched Access Lines, 2010-2019 ..... 415
Table 8.4: $\quad$ Verizon California (U-1002) Legacy Switched Access Line Revenues Have Decreased Roughly in Proportion to the Decrease in Legacy Switched Access Lines, 2011-2019 ..... 416
Table 8.5: $\quad$ Verizon/Frontier California Basic Residential (POTS) Access Line Service Rate Increase History, 2006-2020 ..... 417
Table 8.6: Frontier California Pattern of Investment, 2016-2019 ..... 419

Table 8.7: $\begin{aligned} & \text { Frontier California Affiliate Transactions with Other Frontier Units, } \\ & \text { 2016-2019 }\end{aligned}$
Table 8.8: Frontier California Gross Plant Additions, 2016-2019 by Plant Account 423
Table 8.9: Frontier California Distribution of Gross Plant Additions 2018-2019 424
Table 8.10: Frontier California Gross Plant Additions - 30 Wire Centers with Largest Spend, 2016-2019

Table 8.11: Frontier California Gross Plant Additions, 2016-2019 426
Table 8.12: Frontier California Gross Plant Additions, 2016-2019 (sorted by highest to lowest wire center expenditure)429

Table 8.13: Frontier California Breakdown of Operating Expenses, 2018-2019 434
Table 8.14: Frontier California Outside Plant Maintenance Expenses, 2018-2019 435
Tzble 8.15: Frontier California Regulated and Non-Regulated Revenues and Expenses, 2018-2019 436

Figure 8.1: Frontier Communications Corp. Common Stock share prices, 5-year history.(Source: Google Finance, as of December 16, 2020)

Figure 8.2: Frontier's cumulative five-year total return in comparison to the five-year total return for all S\&P 500 Index stocks and for all S\&P Telecommunications Services Index stocks.

Figure 8.3: Frontier has financed its succession of ILEC acquisitions primarily through the issuance of debt.

Figure 8.4: Frontier Communications Corp. Revenues, 2005-2019.
Figure 8.5: Frontier Communications Corp. Switched Access Lines in Service 2005-2019

Figure 8.6: Frontier corporate net earnings have plummeted in the years since the 2016 California, Texas and Florida acquisitions from Verizon.

Figure 8.7: Frontier's corporate debt service continued to increase while its operating revenues have plummeted.

## A lot has happened to Frontier since our Phase 1 Report

In our April 2019 Report on Phase 1 of this Network Examination, we expressed serious concerns as to Frontier's near-term and ongoing ability to maintain and modernize its California wireline ILEC network so as to provide reliable service to California consumers. We noted that Frontier has been hemorrhaging customers in all major service categories across all of its 29state footprint since its last major acquisition in 2016, as summarized in Table 8.1 below:

Table 8.1
FRONTIER COMMUNICATIONS CORP. CUSTOMER COUNTS BY SERVICE CATEGORY, 2016-2019

Voice		Broadband	Video
1Q2016 (pre-CTF)	$3,372,000$	$2,487,000$	238,000
2Q2016	$5,771,000$	$4,570,000$	$1,628,000$
3Q2016	$5,551,000$	$4,362,000$	$1,222,000$
4Q2016	$5,393,000$	$4,271,000$	$1,145,000$
1Q2017	$5,220,000$	$4,164,000$	$1,065,000$
2Q2017	$5,058,000$	$4,063,000$	$1,007,000$
3Q2017	$4,949,000$	$4,000,000$	961,000
4Q2017	$4,850,000$	$3,938,000$	981,000
2Q2018	$4,667,000$	$3,863,000$	902,000
3Q2018	$4,574,000$	$3,802,000$	873,000
4Q2018	$4,471,000$	$3,735,000$	838,000
1Q2019	$4,395,000$	$3,698,000$	784,000
2Q2019	$4,292,000$	$3,626,000$	738,000
3Q2019	$4,193,000$	$3,555,000$	698,000
4Q2019	$4,118,000$	$3,513,000$	660,000
Source: Frontier Communications Corp. Forms 10-Qs; $10-$ Ks			

On April 1, 2016, Frontier Communications Corp. completed its acquisition of what is now Frontier California under a three-state ILEC purchase from Verizon that also included Verizon ILEC operations in Florida and Texas (the "CTF acquisition"). Frontier paid Verizon \$10.54billion in cash for the three ILECs, and financed the purchase primarily through the issuance of new debt. Even before Frontier took over control of these three Verizon ILECs, its stock had fallen by around $33 \%$ from the (equivalent of) $\$ 125.70$, where it had been February 9, 2015, shortly after the deal with Verizon had been announced. On July 10, 2017, Frontier implemented a 1 -for- 15 share reverse split so as to avoid de-listing of its stock. On December 16, 2020. Frontier stock was trading at $10.8 \notin$ per share, down $99.91 \%$ from its February 2015 high (see Figure 8.1 below).

ECONOMICS AND


Figure 8.1. Frontier Communications Corp. Common Stock share prices, 5-year history.(Source: Google Finance, as of December 16, 2020)

Frontier's 2019 Form 10-K filing puts the extreme distress under which the company has been operating in graphic perspective, by highlighting the cumulative return experienced by its shareholders relative to the concurrent performance of the S\&P 500 index and the S\&P Communications Sector index (see Figure 8.2 below):


Figure 8.2. Frontier's cumulative five-year total return in comparison to the five-year total return for all S\&P 500 Index stocks and for all S\&P Telecommunications Services Index stocks. (Source: Frontier Communications Corp. 2019 Form 10-K, at p. 30)

Following the 2016 CTF purchases, Frontier became the nation's fourth largest ILEC with roughly 5.77 -million residential and business customers (roughly corresponding to about 8.77million switched access lines) across 28 states, ${ }^{58}$ but in making these various acquisitions, the company had assumed $\$ 11.9$-billion in new debt, bringing its total debt as of the end of 2017 to around $\$ 17$-billion. By the end of 2019, Frontier's ILEC access lines had eroded by $28.6 \%$ to approximately 6.33 -million. Its total long-term debt was only slightly lower than in 2017, at \$18.3-billion.

[^23]

Figure 8.3. Frontier has financed its succession of ILEC acquisitions primarily through the issuance of debt. (Source: Frontier Communications Corp. Forms 10-K, 10-Q)

Frontier's growth strategy has, in each case, involved the absorption of large, multi-state operations, some of which had been larger in size than the pre-acquisition Frontier. Notably, and as illustrated on Figure 8.4 below, each of these acquisitions produced a large, one-time revenue spike followed in each instance by revenue erosion from the new immediate post-acquisition level - producing a sort of "sawtooth" effect. In the first quarter of 2016 - the last 3-month period immediately preceding the Verizon acquisition - Frontier companywide revenue was running at an annual rate of roughly $\$ 5.4$-billion. In the second quarter of 2016 - immediately following the Verizon acquisition - Frontier revenue had nearly doubled, jumping to an annual rate of around $\$ 10.4$-billion. But by the final quarter of 2019, Frontier's total revenue was running at an annual rate of less than $\$ 7.8$-billion. In other words, in less than four years, Frontier had given up more than half of the $\$ 5$-billion revenue gain that had resulted from its 2016 CTF acquisition. Note that this revenue erosion was not confined to those three states, but occurred across all of Frontier's operating areas. But the company had acquired that additional $\$ 5$-billion in operating revenues by incurring more than $\$ 11$-billion in new debt, and while its revenue gain had been cut in half, its total debt remained only slightly below its 2016 postacquisition level.



Figure 8.4. Frontier Communications Corp. Revenues, 2005-2019.
(Source: Frontier Communications Corp. Forms 10-K, 10-Q).

Most of that overpayment had been carried as "Goodwill" or "Other Intangibles" on Frontier's corporate balance sheet; by the end of 2019, all of that Goodwill and most of the Other Intangibles have been written off.

The same type of "sawtooth" effect - but even more pronounced - can be seen in the demand for access lines (Figure 8.5). As these "sawtooth" graphs suggest, Frontier was pursuing massive acquisitions into a market - wireline circuit-switched voice telephony - that was already in a steep decline.


Figure 8.5. Frontier Communications Corp. Switched Access Lines in Service, 2005-2019. (Source: Frontier Communications Corp. Forms 10-K, 10-Q)


Frontier's spate of acquisitions dating back to 2006 were accomplished at a total cost of $\$ 22.4$-billion, financed by $\$ 10.5$-billion in new equity and some $\$ 14.1$-billion in new debt. ${ }^{59}$ As shown in Figure 8.3 above, by the end of 2019, Frontier's total debt was more than \$16.3-billion, and the Company's total debt service (interest and amortization) payments in 2019 were more than $\$ 3.5$-billion. ${ }^{60}$ Together with the persistent drop-off in customers and revenues, this resulted in severe cash flow challenges and major earnings erosion despite the revenue growth overall. At year-end 2019, Frontier's debt-to-revenue ratio was 2.01 , up from 1.86 as of yearend 2017. Frontier's cost of debt is now well into the junk bond range. Thus, some \$1.53billion out of the total 2019 debt service of $\$ 3.54$-billion represents interest on that debt.

As we discussed in the Phase 1 Report, in its purchase of Verizon's three ILECs in April 2016, the price that Frontier paid to Verizon was well in excess of the amount that Verizon had
59. Frontier 10-K reports, 2007-2019. In mid-2006, Frontier carried about $\$ 3.95$-billion in total long-term debt. At year-end 2016, immediately following the CTF acquisition, Frontier's long-term debt sat at just under \$18.2billion.
60. Frontier 2019 Form 10-K, at F-5 (Consolidated Balance Sheets); F-6 (Consolidated Statements of Operations); F-8 (Consolidated Statements of Cash Flows).
been carrying on its books for these assets. That excess over book value is carried as "Goodwill" on parent company Frontier Communications, Corp.'s balance sheet. Frontier explained the basis for this treatment as follows: "Goodwill represents the excess of purchase price over the fair value of identifiable tangible and intangible net assets acquired." ${ }^{\circ 1}$ Goodwill would not be includable as a rate base asset under RORR, yet its acquisition created a real cost to Frontier in terms of cost of capital (debt and equity) plus any periodical amortization of the premium amount that Frontier may deem it necessary to make. Indeed, it is even possible that the California ILEC could be earning a satisfactory rate of return under traditional RORR standards while sustaining losses on a financial basis, which necessarily includes any premium above book value that it had paid to Verizon for the CTF acquisition

Out of the $\$ 10.54$-billion that Frontier paid Verizon when the deal closed in April 2016, it allocated some $\$ 2.5$-billion to "Goodwill" and another $\$ 2.16$-billion to "Other Intangibles," which it attributed primarily to the value of Verizon's 3-state "Customer Base" that was included in the acquisition. ${ }^{62}$ In the case of the Frontier California ILEC entity, Frontier recorded \$517.1million of Goodwill at the time of acquisition. ${ }^{63}$ In 2017, Frontier California Goodwill was increased by $\$ 93.97$-million to $\$ 611.1$-million. ${ }^{64}$ In 2019, the entire $\$ 611.1$-million in Goodwill was written-off Frontier California's regulatory accounting books. ${ }^{65}$ Since Goodwill of this type would never be accepted as a rate base asset for regulatory purposes, it is entirely unclear as to why it was even recorded at all on Frontier's regulatory accounting records. Only $\$ 6.24$-billion out of the total CTF purchase price was associated with "Property, Plant and Equipment." ${ }^{,{ }^{66}}$ At year-end 2016, some \$12-34-billion out of Frontier Communications Corp.'s \$29-billion of Total Assets was associated with Goodwill and Other Intangibles; ${ }^{67}$ at year-end 2019, all of Frontier's Goodwill had been written off, and its "Other Intangibles" had eroded to just over \$1-billion. ${ }^{68}$

In its 2019 Form 10-K, Frontier explained that it had "recorded aggregate Goodwill Impairments totaling $\$ 5,725$ million, $\$ 641$ million and $\$ 2,748$ million for 2019, 2018 and 2017, respectively. In the third quarter of 2019, [Frontier\} impaired the $\$ 276$ million remaining balance of [its] goodwill. This impairment and the write down of the balance of [its] goodwill was largely driven by a lower enterprise valuation utilized in [its] testing which reflected, among

[^24]other things, pressures on [Frontier's] business resulting in a continued deterioration in revenue, challenges in achieving improvements in revenue and customer trends, the long-term sustainability of [its] capital structure, and the lower outlook for [its] industry as a whole." ${ }^{69}$

These write-downs of intangibles resulted in a net 2019 Operating Loss of \$4.87-billion. However, since the write-downs do not affect cash, when the write-downs are ignored, Frontier's 2019 Operating Income (before the intangible write-downs) was a positive $\$ 852$-million. But total 2019 debt service payments (principal repayments plus interest) were \$3.54-billion, well in excess of the company's cash income for that year. ${ }^{70}$


Figure 8.6. Frontier corporate net earnings have plummeted in the years since the 2016 California, Texas and Florida acquisitions from Verizon.

Frontier's 2019 Form 10-K gives end-of-year long-term debt at \$16.31-billion, with total long-term and current liabilities at $\$ 19.1$-billion. Total assets are shown as $\$ 17.49$-billion, and total shareholder equity is given as a negative $\$ 4.39$-billion. Frontier's spate of major acquisitions, while expanding its overall revenue base, has had precisely the opposite effect upon its overall profitability. As shown in Figure 8.6, the company's profits, which had peaked in 2006 at over $\$ 350$-million, had turned into losses of $\$ 1.8$-million in $2017 .{ }^{71}$ These decreases in profit
69. Is., at 22.
70. Frontier 2019 Form 10-K, at F-6.
71. Frontier 2017 Form 10-K, at 27.
are driven largely by two main factors - the steady and continuing erosion of its core wireline customer base, and a cost structure that has a large, volume- and traffic-insensitive component. At this point, Frontier has no realistic ability to raise equity capital, and whatever new debt capital that might be available to the company would almost certainly involve massive costs.

Frontier's net income declined following each successive acquisition, to the point where it has now been negative for seven consecutive quarters.

Notably, Verizon had no amount for "Goodwill" shown on its regulatory accounting balance sheet, as reflected on its ARMIS Form 43-02 submissions. However, Frontier California had included a portion of the "Goodwill" resulting from the premium over book value that it had paid for the Verizon California assets on its 2016 and 2017 ARMIS Forms 43-02 filed with the CPUC. In 2016, Frontier California recorded as a gross addition a Goodwill amount of \$511.12million. For 2017, Goodwill gross additions are shown as $\$ 93.97$-million, for a total end-of-year 2017 value of $\$ 611.09$-million. To put these amounts in context, consider that, according to Frontier California's Form 43-02 for 2017, the Company's total net assets as of the end of 2017 were $\$ 3.42$-billion. Thus, the $\$ 611.09$-million of Goodwill resulting from the excessive purchase price of the Verizon assets represents $17.9 \%$ of the Company's total net assets. As of year-end 2019, the entire remaining $\$ 611.09$-million in Verizon California Goodwill was writren off, resulting in total Verizon California net assets of \$3.21-billion

Figure 8.7 compares Frontier's Operating Income with its debt service (debt repayment plus interest) obligations over the 2005-2019 period.


Figure 8.7. Frontier's corporate debt service continued to increase while its operating revenues have plummeted. (Source: Frontier Communications Corp. Forms 10-K, 10-Q)

In addition to its overall leverage increases resulting from the succession of new debt as reflected in Figure 8.7 above, Frontier's cost of debt had also been pushed skyward due to a series of downgrades by Moody's to the company's credit rating since the CTF acquisition. Moody's has downgraded Frontier's credit rating three separate times, from Ba3 to B1 in November 2016, from B1 to B2 in May 2018 and again, from B2 to B3, in November 2018. ${ }^{72}$ Having filed for Chapter 11 protection, Frontier's access to additional debt or equity financiing at this point is all but nonexistent.

## Verizon California had been experiencing customer drop-offs for years preceding the Frontier acquisition

Prior to its 2016 sale to Frontier, Verizon California had been experiencing a steady decline in its legacy switched access lines in service for a number of years. Between January 2010 and March 31, 2016, the last day that Verizon owned the company, its switched access lines decreased by about $56.2 \%$, from $2,778,584$ to $1,216,829$. In fact, between February 5, 2015,

[^25]when the Securities Purchase Agreement for the CTF deal was signed by the two companies, ${ }^{73}$ and the April 1, 2016 closing date, Verizon California switched access lines in service had fallen by $16.3 \%$ from about $1,453,444$ (as of the end of January 2015) to $1,216,829$. We don't have corresponding figures for Texas or Florida, but it's safe to assume that the results there were similar. Incredibly, the Securities Purchase Agreement did not include any provision for an adjustment in the purchase price to reflect any change in the size of the three ILECs' customer base as of the final closing date. The downward trend in the number of legacy circuit-switched access lines persisted into the post-transaction era. By 2019, average circuit-switched access lines in service had fallen by $82.8 \%$ relative to the 2010 level. Table 8.2 below extends the average number of switched access lines into the 2016-19 period:

Table 8.2   VERIZON/FRONTIER CALIFORNIA   AVERAGE LEGACY SWITCHED ACCESS LINES IN SERVICE 2010-2019										
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	VERIZON					FRONTIER				
VZIFTRCA	2,641,467	2,322,926	1,991,862	1,706,402	1,507,460	1,368,589	1,154,018	951,351	746,975	615,964
\% of 2010		87.9\%	75.4\%	64.6\%	57.1\%	56.1\%	43.7\%	36.0\%	28.3\%	23.3\%
\% of FTR acquisition							94.8\%	78.2\$	61.4\%.	50.6\%
Source: CA POTS lines in service derived from GO 133-C/D § 3.3 and 3.4 Trouble Reports per 100 Lines (TRPH) quarterly filings, 2010-2019. Switched access lines are average over each year. "\% of FTR Acquisition" is based upon 1,216,829 FTR Access Lines in Service as of 4/1/16.										

Verizon California financial data for 2010 has not been provided. Between 2011 and 2015, Verizon saw a 41.1\% drop in average legacy switched access lines over the 2010-2015 period, Notably, despite this, Verizon California gross revenues remained relatively constant through 2015. However, following Frontier's takeover of the company, the California ILEC's revenues went into a steep decline, as summarized on Table 8.3 below:

[^26]
## Table 8.3

VERIZON/FRONTIER OPERATING REVENUES HAVE DECREASED, BUT BY FAR LESS THAN THE DECREASE IN LEGACY SWITCHED ACCESS LINES, 2011-2019 (\$000)									
	2011	2012	2013	2014	2015	2016	2017	2018	2019
	VERIZON						FRO	NTIER	
Revenues	\$3,128,706	\$2,757,563	\$2,728,855	\$3,285,034	\$3,121,477	\$2,252,145	\$2,054,289	\$1,916,500	\$1,817,655
\% of 2011		100.0\%	87.2\%	119.1\%	113.2\%	81.7\%	65.7\%	61.3\%	58.1\%
Avg. Switched access lines	2,322,926	1,991,862	1,706,402	1,507,460	1,368,589	1,154,018	951,351	746,975	615,964
\% of 2011		85.7\%	73.5\%	64.9\%	58.9\%	49.7\%	40.9\%	32.2\%	26.5\%
Avg. Op.   Rev. Per   Switched   Access Line	\$1,347	\$1,384	\$1,599	\$2,179	\$2,281	\$1,951	\$2,159	\$2,565	\$2,951

NOTE DATA FOR 2010 IS NOT AVAILABLE, SO ANALYSIS IS BASED ON 2011-2015. Source: Verizon/ Frontier CA ARMIS Form 43-01 as filed with CPUC; POTS lines in service derived from GO 133-C/D § 3.3 and 3.4 Trouble Reports per 100 Lines (TRPH) quarterly filings, 2010-2019. Switched access lines are average over each year.

Of course, a portion of the Verizon/Frontier California operating revenues come from services other than legacy POTS lines. It is thus instructive to compare the decrease in switched access lines more directly with the principal revenue sources associated with these services. Fortunately, more detailed revenue data is provided in the annual financial reports, ARMIS Forms 4301, 43-02 and 43-03, that were filed by Verizon and Frontier with the CPUC. However, this breakdown is only available for the period of Verizon ownership (2011-2015) and for the former GTE California (U-1002) entity, as summarized in Table 8.4 below.

As these data demonstrate, when confined to only those revenue sources directly attributable to legacy switched access line services - specifically, USOA Account 5001 (Basic Area Revenue), USOA Account 5081 (End User Common Line revenue), and USOA Account 5082 (Switched Access revenue) - Verizon California legacy access line-related revenues decreased by about $38.8 \%$, only slightly less than the $42 \%$ drop in switched access line demand, over the 2011-2015 period. Switched access rates, which remain subject to tariff at both the state and federal levels, had remained unchanged over the 2010-2017 period.

## Table 8.4

## VERIZON/FRONTIER CALIFORNIA (U-1002) LEGACY SWITCHED ACCESS LINE REVENUES HAVE DECREASED ROUGHLY IN PROPORTION TO THE DECREASE IN LEGACY SWITCHED ACCESS LINES, 2011-2019 (\$000)

	2011	2012	2013	2014	2015	2016	2017	2018	2019
	VERIZON						FRONTIER		
USOA Acct 5001 Basic Area Rev	\$670,218	\$566,696	\$591,229	\$429,960	\$389,036	\$282,413	\$219,314	\$199,756	\$182,426
USOA Acct 5081 EUCL Revenue	\$220,551	\$198,073	\$191,186	\$186,869	\$171,415	\$123,579	\$97,175	\$83,601	\$76,615
USOA Acct 5082 Switched Access	\$174,462	\$44,270	\$42,549	\$114,878	\$91,143	\$88,246	\$79,357	\$71,691	\$66,513
Total switched access line rev	\$1,065,231	\$809,039	\$824,964	\$731,707	\$651,594	\$494,238	\$395,846	\$355,048	\$325,554
\% of 2011		75.95\%	77.44\%	68.69\%	61.17\%	46.40\%	37.16\%	33.33\%	30.56\%
Avg. Switched access lines (000)	2,322,926	1,991,862	1,706,402	1,507,460	1,368,589	1,154,018	951,351	746,975	615,964
\% of 2011		85.75\%	73.46\%	64.89\%	58.92\%	49.68\%	40.95\%	32.16\%	26.52\%
\$ per switched access line	\$458.57	\$406.17	\$483.45	\$485.39	\$476.11	\$428.28	\$416.09	\$475.31	\$528.53

NOTE DATA FOR 2010 IS NOT AVAILABLE. ANALYSIS IS BASED ON 2011-2015. Source: Verizon CA ARMIS Form 43-01 as filed with CPUC; POTS lines in service derived from GO 133-C/D § 3.3 and 3.4 Trouble Reports per 100 Lines (TRPH) quarterly filings, 2011-2015. Switched access lines are average over each year.

However, local switched POTS access line rates other than California LifeLine ${ }^{74}$ have been detariffed and have been subject to modest rate increases - substantially less than those implemented by AT\&T California - over the 2010-2017 period, as shown in Table 8.5 below:

[^27]|  |  |  |  | Table 8.5 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | VERIZON/FR SIDENTIAL ATE INCREAS | ONTIER CAL POTS) ACCE E HISTORY | FORNIA SS LINE S 2006-2020 | ERVICE |  |
|  |  | Flat-r | ate Residenc | (1FR) | Measure | -rate Resid | nce (1MR) |
| Year | Eff date | Monthly Rate | \% incr since onset of URF | \% incr relative to 1/1/10 | Monthly Rate | \% incr since onset of URF | $\%$ incr relative to 1/1/10 |
| 2006 | 9/1/2006 | \$16.85 | - |  | \$10.00 |  |  |
| 2008 | 1/1/2008 | \$17.25 | 2.37\% |  | \$10.24 | 2.40\% |  |
| 2009 | 1/1/2009 | \$19.50 | 15.73\% |  | \$11.80 | 18.00\% |  |
| 2010 | 1/1/2010 | \$19.50 | 15.73\% | - | \$11.80 | 18.00\% |  |
| 2011 | 1/1/2011 | \$20.50 | 21.66\% | 5.13\% | \$12.39 | 23.90\% | 5.00\% |
| 2012 | 3/1/2012 | \$20.50 | 21.66\% | 5.13\% | \$12.39 | 23.90\% | 5.00\% |
| 2013 | 1/1/2013 | \$20.50 | 21.66\% | 5.13\% | \$12.39 | 23.90\% | 5.00\% |
| 2014 | 1/1/2014 | \$22.00 | 30.56\% | 12.82\% | \$13.40 | 34.00\% | 13.56\% |
| 2015 | 1/1/2015 | \$22.00 | 30.56\% | 12.82\% | \$13.40 | 34.00\% | 13.56\% |
| 2016 | 1/1/2016 | \$22.00 | 30.56\% | 12.82\% | \$13.40 | 34.00\% | 13.56\% |
| 2017 | 1/1/2017 | \$22.00 | 30.56\% | 12.82\% | \$13.40 | 34.00\% | 13.56\% |
| 2018 | 1/1/2018 | \$22.00 | 30.56\% | 12.82\% | \$13.40 | 34.00\% | 13.56\% |
| 2019 | 1/1/2019 | \$22.00 | 30.56\% | 12.82\% | \$13.40 | 34.00\% | 13.56\% |
| 2020 | 1/1/2020 | \$22.50 | 33.53\% | 15.38\% | \$15.00 | 50.00\% | 27.12\% |
| Source: CPUC Communications Division Staff. |  |  |  |  |  |  |  |

It is instructive to compare the history of Verizon California rate increases to those imposed by AT\&T California as summarized on Table 4A. 10 (and referenced in Chapter 7). Historically, Verizon (and its predecessor GTE) basic local residential service rates were always higher than those of AT\&T (Pacific Bell). However, that relationship changed in 2012, when AT\&T raised its flat-rate residential service rate to $\$ 21.00$. Since the onset of URF, AT\&T California has increased the price for its flat-rate residential POTS service by $152.57 \%$ vs. Verizon's $30.56 \%$ increase over the comparable time frame. Looking only at the 2010-2019 period under examination in this study, AT\&T has raised its flat-rate residence rate by $64.13 \%$ vs. $12.82 \%$ for Verizon/Frontier.

Unlike AT\&T, which had raised its legacy flat-rate residential POTS rates by $152 \%$ since the onset of URF, Verizon's rates for this service had risen by only $31 \%$ as of the date of the sale to Frontier, and Frontier had not effected any rate increase since the acquisition throgh the end of 2019.

## Verizon California had been consistently disinvesting in its California local network infrastructure, and Frontier has been pursuing a similar strategy.

As we noted in our Phase 1 Report, Verizon California would typically pay dividends to its parent company that exceeded its net operating income. We view such practices as constituting disinvestment, in that by paying dividends in excess of earnings, the subsidiary (Verizon California) is effectively transferring a portion of its capital base to its parent. Since taking over the company in April 2016, Frontier California has issued no dividends to its parent, Frontier Communications Corporation. However, Frontier's total net income was actually a loss of \$476million. Frontier California did have positive net income in 2017, but paid no dividend to its parent.

Disinvestment also arises when retirements and depreciation accruals exceed the gross plant additions in any given year or cumulatively over time. This has the effect of reducing Net Plant in Service, a condition that has prevailed under Frontier ownership of the company. Since taking over the company, Frontier has invested $\$ 914.7$-million (net of adjustments) in gross plant additions, but has recorded $\$ 188.3$-million in retirements and has taken $\$ 1.74$-billion in depreciation accruals - a net disinvestment of just over \$1-billion.

ECロNロMICS AND

Table 8.6
FRONTIER CALIFORNIA (U-1002) PATTERN OF INVESTMENT, 2016-2019 (\$000)

	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	TOTAL
BOY Gross Telecom Plant in Service   (TPIS)	$13,496,895$	$13,392,504$	$13,689,509$	$13,973,021$	
Gross Plant Additions	80,373	428,559	301,398	261,783	$1,072,113$
Retirements	190	$(135,489)$	$(19,406)$	$(33,199)$	$(188,284)$
Transfers/Adjustments	$(164,574)$	3,934	1,521	1,800	$(157,319)$
EOY Gross Telecom Plant in Service	$13,392,504$	$13,689,508$	$13,973,022$	$14,203,405$	
Annual TPIS depreciation accruals   (acct 6561)	316,101	428,639	534,449	466,099	$1,745,288$
Cumulative depreciation reserve	$11,229,881$	$11,229,881$	$12,116,741$	$12,560,117$	
Net EOY TPIS	$2,162,623$	$2,459,627$	$1,856,281$	$1,643,288$	
Net/Gross TPIS	$16.15 \%$	$17.07 \%$	$13.28 \%$	$11.57 \%$	
Change in Net Telecommunications Plant in Service since FTR takeover	$(469,557)$				
Change in Net Telecommunications Plant in Service since Network Exam Phase 1	$(816,339)$				

NOTE: In response to a Communications Division data request, Frontier prepared Forms 43-02 for 2016 and 2017 that included both the former GTE and former Continental study areas. The figures shown here for 2016 and 2017 thus include both the GTE and Contel results. The accounting treatment that Frontier had adopted reflects the pre-acquisition condition of Frontier's books as of January 1, 2016. The TPIS from Verizon California that was transferred to Frontier on April 1, 2016 had been included in the 2016 "Transfer/Adjustment" on Frontier's 2016 Form 43-02. As submitted, Frontier had reported the beginning-of-year 2016 amount for TPIS as 0 and showed a positive adjustment of $\$ 13,332,321$. For consistency, the BOY TPIS for 2016 is shown on this Table is the EOY 2015 amount as carried on Verizon California's books, and the 2016 "Adjustment" has been modified to reflect only the net adjustment to TPIS, a negative $\$ 164,574$. The "Change in Net TPIS Since FTR takeover" is calculated relative to Verizon California's EOY 2015 Net TPIS of \$ 2,112,845.

Verizon/Frontier California's Gross Telecommunications Plant in Service ("TPIS") increased over the 2016-2019 period. Total Gross Plant Additions - $\$ 1.07$-billion - were exceeded by the total depreciation accruals taken over the corresponding period - \$1.75-billion - which, together with a negative $\$ 157$-million in net Transfers and Adjustments, resulted in a net disinvestment (change in net TPIS) of a negative $\$ 469.5$-million. In fact, in the two years following the time period of Phase 1 of this Network Examination, Frontier-California's net TPIS decreased from \$2.46-billion at end-of-year 2017 to $\$ 1.64$-billion as of the end of 2019, a decrease of \$816million.

Since acquiring the California ILEC from Verizon in 2016, Frontier continued to invest less in Gross Plant Additions than it took in retirements and depreciation accruals, resulting in a net disinvestment of 469.5-million..

Frontier California's nominally reported revenues, expenses and net income cannot by themselves provide a complete or accurate picture of the ILEC entity's financial performance, because they do not fully account for the extensive nature and amount of inter-affiliate transactions that take place on an ongoing basis between the Frontier California ILEC entity and numerous other affiliates that are themselves, directly or indirectly, wholly owned by the parent company. These transactions involve both purchases made by the ILEC from other Frontier affiliates as well as sales made by the ILEC to other Frontier affiliates. ${ }^{75}$ Table 8.7 below provides a summary of these transactions and their relationship to Frontier California's overall revenues and operating expenses. Frontier advises that it "is not selling any services to affiliates ${ }^{176}$ and its ARMIS filings show zero revenue from such sales.

[^28]76. Frontier Response to DR 12-F-10(d).


ECDNDMICS AND

Table 8.7
FRONTIER CALIFORNIA
AFFILIATE TRANSACTIONS WITH OTHER FRONTIER UNITS, 2016-2019
(\$000)

	2016	2017	2018	2019
Frontier California operating revenue ${ }^{77}$	819,948	2,054,287	1,916,501	1,817,555
Sales to other FTR affiliates	0	0	0	0
Pct of revenues from sales to other FTR affiliates	0.00\%	0.00\%	0.00\%	0.00\%
FTR CA pre-tax OpEx excl depr/amort ${ }^{78}$	863,814	1,213,774	1,160,941	1,116,584
Services Purchased from FTR affiliates	394,290	490,169	488,602	506,213
Pct of total OpEx paid to FTR affiliates	45.65\%	40.38\%	42.09\%	45.34\%

Source: Frontier CA ARMIS Form 43-02, Table I-1, I-2, Form 43-03, as filed annually with CPUC.

With the exception of tariffed switched and special access services that were (presumably) being purchased from Frontier California by various other Frontier affiliates, the specific transfer prices at which these transactions are recorded can hardly be viewed as being set on the basis of arm's length negotiations. Since both the seller and buyer in each instance are wholly-owned by the same parent company, the nominal transfer price has little or no effect upon the parent company's bottom line. However, if it is the parent company's goal to extract cash from the ILEC entity, setting an inflated transfer price can accomplish this as effectively as making a dividend payment to the parent, but with far less exposure as to the precise purpose of the policy. As Table 8.7 demonstrates, from 2016 onward, in the range of $40 \%$ to $45 \%$ of Frontier California total operating expenses net of depreciation and amortization were paid over to other Frontier affiliates for services rendered.
77. ARMIS Form 43-02, Table I-1, for 2016-2019. Revenue and expense figures for the nine months of Frontier ownership during 2016 was derived by subtracting the Verizon account records as of the April 1, 2016 closing date, provided in response to DR 12-F-3, "Attachment 12-F-3 - Confidential Verizon provided income statement data (Frontier CA).xlsx".
78. Amounts shown are calculated as Total Operating Expenses (Form 43-03 Line 720) - Depreciation/
Amortization expenses (Form 43-03 Line 6560), which represents current cash operating expenses. The source data
for this calculation is as follows:

Line 720 Total Operating Exp	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Line 6560 Depre/Amort	$1,704,838$	$1,642,411$	$1,695,390$	$1,817,555$

> Because so much of Frontier California's operating expenses involved payments to other Frontier affiliates via inter-affiliate transactions, its nominally reported expenses and net income cannot by themselves provide a complete or accurate picture of the ILEC entity's financial performance.

Prior to the sale of the three CTF ILECs to Frontier, Verizon had also provided an extensive array of services to these (and to all of its other) ILECs out of centralized service affiliates and other entities. Notably, Frontier had expressly stated - to investors and in testimony before this Commission in support of its assessment as to the financial merit of the 2016 Verizon ILEC acquisition - that it had concluded that the payments allocated by the three CTF ILECs to the parent Verizon Communications, Inc. for centralized and other affiliate services were excessive and that these could be accomplished at considerably lower cost by Frontier. ${ }^{79}$

Frontier's assessment as to the economic merit of the 2016 Verizon ILEC acquisition was heavily influenced by its belief that Verizon affiliate charges for centralized services were much higher than the cost that Frontier would incur to provide comparable services to these ILECs.

## The focus of Frontier California's capital investments over the 2016-2019 period

Frontier has provided accounting data at the wire center level for the 2018-2019 Phase 2 period. Account-level gross plant additions provide an indication as as to both the type and geographic locations of Frontier's capital spending in California. ${ }^{80}$ Table 8.8 below summarizes the types of capital expenditures that Frontier California has made during the 2018-2019 Phase 2 study period.

[^29]80. See Frontier California Responses to CD DR 11-F-8 through 11-F-12.

FRONTIER CALIFORNIA GROSS PLANT ADDITIONS 2018-2019 BY PLANT ACCOUNT				
Account	Description	2018	2019	TOTAL
2116	Tools and Other Work Equipment	224,934	47,939	272,873
2121	Buildings.	10,763,182	3,152,049	13,915,231
2124	General purpose computers.	9,237	95,602	104,839
2212	Digital electronic switching.	2,231,119	4,801,573	7,032,691
2231	Radio systems.	19,239		19,239
2232	Circuit equipment.	43,384,030	31,218,537	74,602,568
2362	Other terminal equipment.	12,748,829	6,577,281	19,326,111
2411	Poles.	68,354,060	74,805,934	143,159,993
2421	Aerial cable.	33,084,879	30,325,783	63,410,662
2422	Underground cable.	37,897,251	39,655,345	77,552,596
2423	Buried cable.	85,072,885	60,635,943	145,708,827
2426	Intrabuilding network cable.		391,545	391,545
2441	Conduit systems.	7,175,708	9,670,698	16,846,406
2681	Capital leases.	432,764		432,764
2712	NON-REG INTERNET EQUIPMENT		102,916	102,916
2732	NON-REG INTERNET EQUIPMENT	46,755	8,828	55,583
2744	NON-REG INTERNET EQUIPMENT	238,519		238,519
2745	NON-REG INTERNET EQUIPMENT	38,142	586,083	624,224
2746	NON-REG INTERNET EQUIPMENT	10,662	36,603	47,265
2792	NON-REG INTERNET EQUIPMENT	370,054		370,054
	TOTAL ALL ACCOUNTS	302,102,248	262,112,658	564,214,905
	TOTAL REG ACCOUNTS	301,398,116	261,378,229	562,776,345
	CENTRAL OFFICE PLANT	45,634,388	36,020,110	81,654,498
	OUTSIDE PLANT	231,584,781	215,485,247	447,070,029
	OTHER REGULATORY PLANT	24,178,946	9,872,871	34,051,818
	TOTAL NON-REG ACCOUNTS	704,132	734,429	1,438,561
	\% NON-REG	0.23\%	0.28\%	0.25\%

Frontier has provided annual data for 2016 through 2019 by account and by wire center in response to DR-03F, DR-04F and, for 2018-2019, in its response to DR 11F. Frontier was also asked to provide annual 2018-2019 data on construction and rehabilitation expenditures for outside plant and for central office plant.

Overall, Frontier California (both the former GTE California and Continental Telephone components) made gross plant additions totaling \$946.9-million over the 45 months from April 2016 (when Frontier acquired the company) through December 2019. As shown in Table 8.9 below, \$176.3-million was spent on central office equipment (COE) (including both switches and circuit equipment), and $\$ 717.8$-million was spend on outside plant (OSP).

		Table 8.9			
	RIBUTION	NTIER CAL OF GROSS 2016-201	RNIA   ANT ADDI		
	2016	2017	2018	2019	TOTAL
Gross Plant Additions	60,503,799	323,586,362	301,398,116	261,378,229	946,866,506
COE	16,910,928	77,728,183	45,634,388	36,020,110	176,293,609
OSP	41,953,891	228,765,798	231,584,781	215,485,247	717,789,717
Other	1,638,980	17,092,381	24,178,947	9,872,872	52,783,180
Source: Frontier Response to DR-03F. The COE and OSP categories combined are slightly less than the total gross additions, which also include several minor asset categories.					

Since taking over the Company in April 2016, Frontier has directed some $75.8 \%$ of total gross additions toward outside plant, with another $18.6 \%$ gong to central office equipment. Focusing specifically upon 2018-2019, Frontier has provided account level plant additions by wire center, as well as Forms 43-02 for those same years.

Frontier's 2018-19 plant additions were spread across 247 wire centers, and ranged in magnitude from a few thousand dollars to $\$ 52.6$-million. However, roughly $63.8 \%$ of the total 4 year spend was directed toward only 30 individual wire centers, as summarized in Table 8.10.

Tables 8.11 and 8.12 provide more details on Frontier California's capital spending by individual wire center and by plant accout. Table 8.11 provides this data for each of Frontier's 247 California wire centers, sorted alphabetically by wire center name. Table 8.12 provides the same data, sorted by total gross plant addition spending, from highest to lowest.

FRONTIER CALIFORNIA   GROSS PLANT ADDITIONS 30 WIRE CENTERS WITH LARGEST SPEND 2018-2018		
Wire Center	Gross Plant Additions	Pct of Total
ANZA	52,653,317	9.33\%
TORRANCE	49,517,144	8.78\%
SAN BERNARDINO	47,793,287	8.47\%
LA VERNE	44,244,163	7.84\%
MALIBU	29,632,161	5.25\%
LONG BEACH	11,624,434	2.06\%
ADELANTO	10,092,536	1.79\%
LA PUENTE	9,158,605	1.62\%
ONTARIO	8,921,361	1.58\%
WHITTIER	8,824,810	1.56\%
Huntington Beach	7,169,619	1.27\%
WESTMINSTER	6,858,353	1.22\%
HESPERIA	5,546,481	0.98\%
LANCASTER	5,081,545	0.90\%
WILLOW CREEK	4,911,000	0.87\%
Santa Monica	4,600,613	0.82\%
VICTORVILLE	4,536,395	0.80\%
BIG BEAR LAKE	4,380,012	0.78\%
COVINA	4,310,449	0.76\%
APPLE VALLEY	4,210,201	0.75\%
SANTA BARBARA	4,152,509	0.74\%
HEMET	3,987,089	0.71\%
NOVATO	3,926,776	0.70\%
REDLANDS	3,849,081	0.68\%
PERRIS	3,791,804	0.67\%
NORWALK	3,586,445	0.64\%
DOWNEY	3,262,674	0.58\%
SANTA MARIA	3,090,196	0.55\%
PALM SPRINGS	$3,031,956$	0.54\%
INDIO	3,018,409	0.53\%
Total -- Highest 30 wire centers	359,763,423	63.76\%
Total Gross plant additions	564,214,905	100.00\%


	$\qquad$ $\qquad$ $\qquad$ $\qquad$    $\qquad$                   $\qquad$    $\qquad$    $\qquad$     







## Maintenance and rehabilitation expenses 2018-19

In CD Data Request 11-F-13, Frontier California was asked to "provide the Operating Expense charges as recorded on each of the following USOA expense accounts separately for each central office building and its associated wire center serving area, for each of the six-month periods between January 1, 2018 and December 31, 2019 ..." Frontier provided only summary, company-wide amounts, but has not provided this information "accounts separately for each central office building and its associated wire center serving area." The response also provided a breakdown of expenses as between regulated and non-regulated services. Table 8.13 below, which was prepared based upon data provided by Frontier California in response to DR 11-F-13, summarizes the information that was provided. Over the 2018-2019 period, Frontier California incurred a total of $\$ 1.02$-billion in central office and outside plant operating costs. Of this amount, approximately $\$ 904.5$-million, about $88.42 \%$, was spent in support of regulated services, while the remaining $\$ 118.5$-million, roughly $11.58 \%$, was spent in support of nonregulated services.

Frontier California also provided operating expenses incurred in support of non-regulated services in its response to DR 12-F-5, which is summarized on Table 8.15. Table 8.14 is limited to outside plant expense accounts, whereas Table 8.13 includes central office expense accounts as well. Overall, both of these table put nonregulated operating expenses in the range of $11 \%$ of total OpEx.

Table 8.15, on the other hand, provides a breakdown of regulated and non-regulated revenues and operating expenses as provided by Frontier California in response to DR 5F-12. The Table includes a number of expense accounts in the 9XXX series that, when aggregated and compared with the total of regulated services expense accounts 6 XXX series) produce a considerably higher non-regulated expense component overall. Table 8.15 also provides total and nonregulated revenues. The table provides calculations of the percentages of total revenues and total costs that are associated with non-regulated services; overall, these percentages, while not exactly the same for both revenues and expenses, are fairly close when viewed for each of the four years.


;

Table 8.14						
FRONTIER CALIFORNIA OUTSIDE PLANT MAINTENANCE EXPENSES 2016-2019						
Account Description	2016	2016	2018	2019	2018-18 TOTAL	TOTAL
REGULATED SERVICES OUTSIDE PLANT MAINTENANCE EXPENSES						
6421 Aerial Cable	29,009,338	43,123,060	39,024,617	41,793,600	80,818,217	152,950,615
6422 Underground Cable	11,791,084	13,010,315	15,878,145	16,054,392	31,932,537	56,733,936
6423 Buried Cable	33,389,710	46,177,738	49,876,817	51,692,489	101,569,305	181,136,753
6424 Submarine Cable	8,312	155,066	92,418	116,993	209,411	372,789
6426 Intrabuilding Network	100,656	$(15,829)$	9,719	581	10,300	95,127
6431 Aerial Wire	1,638,866	2,802,085	757,981	213,737	971,717	5,412,668
6441 Conduit	345,625	366,839	370,984	963,301	1,334,285	2,046,749
TOTAL REGULATED SERVICES EXPENSE	76,283,591	105,619,274	106,010,680	110,835,092	216,845,772	398,748,637
NON-REGULATED SERVICES OUTSIDE PLANT MAINTENANCE EXPENSES						
9421 Aerial Cable	5,249,955	4,200,725	6,355,782	7,146,025	13,501,807	22,952,487
9423 Buried Cable	6,624,484	4,579,832	6,288,366	7,067,534	13,355,900	24,560,216
TOTAL NON-REGULATED SERVICES EXPENSE	11,874,439	8,780,557	12,644,148	14,213,559	26,857,707	47,512,703
TOTAL ALL OUTSIDE PLANT MAINTENANCE COST PERCENT NON-REGULATED	88,158,030	114,399,831	118,654,828	125,048,651	243,703,479	446,261,340
	13.47\%	7.68\%	10.66\%	11.37\%	11.02\%	10.65\%



## GO 133-D §9.7 Alternative Investments

As we discussed in our Phase 1 Report, in August 2016, the Commission issued a revised GO 133-D that imposes financial penalties upon ILECs that persistently fail to meet minimal POTS service quality standards. GO-133-D §§9.3, 9.4 and 9.5 provide for escalating daily fines where a carrier's failure to meet the required service standards persists for an extended period of time. ${ }^{81}$ A total of $\$ 3.35$-million in fines was assessed against Frontier California since this provision became effective. ${ }^{82} \S 9.7$ allows offending carriers the opportunity to submit an "Alternative Proposal for Mandatory Corrective Action" whereby carriers can avoid the fine by agreeing to invest an amount of at least double the fine if such an investment will be effective in remedying the service problem for which the fine had been imposed. This "alternative" opportunity is initiated by the carrier by submitting "a request to suspend the fine." Under this provision,
... carriers may propose, in their annual fine filing, to invest no less than twice the amount of their annual fine in a project (s) which improves service quality in a measurable way within 2 years. The proposal must demonstrate that 1) twice the amount of the fine is being spent, 2) the project ( s ) is an incremental expenditure with supporting financials (e.g. expenditure is in excess of the existing construction budget and/or staffing base), 3) the project (s) is designed to address a service quality deficiency and, 4) upon the project (s) completion, the carrier shall demonstrate the results for the purpose proposed. ${ }^{83}$

Carriers can avoid fines either by meeting the GO-133-D §3 performance standards or by investing in network upgrades that will result in improved service quality overall. These investments must, however, be directed specifically at services that fall within the scope of GO 133-D, i.e., legacy circuit-switched voice lines. Frontier California has sought approval of alternative proposals for mandatory corrective action under § 9.7 in lieu of paying the assessed fines in 2017, 2018 and 2019. ${ }^{84}$ The company's "alternative investment" proposals for 2017 and 2018 amounted to $\$ 4.14$-million, in liew of paying $\$ 2.07$-million in fines for the two years. The Commission approved these requests for 2017 and 2018. For 2019, Frontier calculated its fine at $\$ 1.28$-million and sought CPUC approval for its "alternative investment" proposal amounting to \$2.56-million. However, CD staff recommended that the Commission deny Frontier's "alternative investment" proposal:

[^30]This, however, is not the first time that Frontier CA has proposed a corrective action plan, pursuant to Section 9.7, in lieu of paying fines for failure to comply with the Commission's service quality standards. Its past corrective action plans have thus far not resulted in sustained improvement in its service quality performance, as demonstrated by Frontier CA's need to file this advice letter, which is its third consecutive Section 9.7 corrective action plan. As a result, it is unclear to Staff whether the project Frontier CA describes in its AL 12828 proposed corrective action plan would result in the necessary sustained performance results that are consistent with the Commission's long-term goals for service quality. ${ }^{85}$

CD has been tracking the effectiveness of such "alternative investments" in improving service quality and, in Frontier's case, has found them wanting.

As background, from April 2016 (when Frontier CA acquired Verizon California) through the 4th Quarter of 2019, Frontier CA has repeatedly failed to meet the minimum Out of Service Repair Interval and Answer Time standards. For those past years, Frontier CA similarly proposed Section 9.7 corrective action plans in lieu of paying fines for its sub-standard service quality performance and non-compliance with the GO 133-D minimum standards in years 2017 and 2018, which CD approved in November 201813 and May 2019, respectively. Despite proposing to spend a total of $\$ 4,849,913$ in those two previous GO 133-D corrective action plans, Frontier CA did not demonstrate significant improvement in its Out of Service Repair Interval standard through December 2019. Considering Frontier CA's past unsuccessful performances with its corrective action plans, CD found it unreasonable to similarly approve Frontier CA's third consecutive Section 9.6 corrective action plan proposed in AL 12828. ${ }^{86}$

As we noted above, during 2018-2019, Frontier California invested \$562.8-million in Gross Plant Additions, primarily in central office equipment ( $\$ 301.4$-million) and outside plant ( $\$ 261.4$-million). Had it simply paid the fine, Frontier would have been out $\$ 2.07$-million. That extra $\$ 2.07$-million that Frontier had offered to invest (over and above the $\$ 2.07$-million it would have paid anyway) amounts to less that 0.37\$ of Frontier's total 2018-2019 plant additions - a truly de minimis sum, little more than a rounding error. There is no indication that, absent its acceptance of the $\S 9.7$ Alternative Investments option, the same total amount would not have been invested anyway. In our Phase 1 Report, we had concluded that the GO 133-D fines were insufficient to offer a financial inducement for ILEC compliance with the Commission's service quality minimum performance standards because the cost of the fine represented a minuscule fraction of the cost that the ILEC would need to incur to improve its service quality. We reiterate that observation here, as well as our recommendation that the level of these fines be significantly increased. We certainly concur with the Staff's recommendation and the
85. Draft Resolution T-17724, at 4.
86. Id., citations omitted.

Commission’s March 4, 2021 ruling that Frontier's $\S 9.7$ Alternative Investment proposal for 2019 be denied. ${ }^{87}$

## Summary and conclusions

Frontier California represents a major component of its new parent, Frontier Communications Corp. But with the parent company's financial condition at a crisis stage, Frontier California's financial condition and investment policies will be dictated by conditions that are largely beyond the CPUC's control. The California ILEC entity has virtually no ability to raise equity or debt capital on its own. If the parent company successfully emerges from bankruptcy, its ability to raise capital may improve, and at this point that is speculative at best

Since taking over the company in 2016, Frontier has made gross infrastructure investments totalling some $\$ 946$-million, the vast majority of which ( $\$ 718$-million) have been directed toward new outside plant. Although only a relatively small portion of that investment has been identified officially as supporting "non-regulated" services, it seems highly likely that the bulk of these projects have involved extending fiber optic distribution facilities to individual customer premises primarily to facilitate deployment of high-speed broadband Internet access and video services. While such undertakings also have the potential to improve the reliability of basic voice telephone service, such outlays could not be economically justified for that alone. Indeed, Frontier did not even offer standalone VoIP telephone services to customers who do not also take broadband Internet access before July 2019, and does not track the number of such customers: "The number of interconnected VoIP subscriptions on a standalone basis is not tracked and Frontier is investigating whether this data is available. ${ }^{88}$ For those customers who continue to take legacy basic voice telephone services, such investments have limited benefit. As we noted in Chapter 4F above, with respect to such legacy services, Frontier California has seen deterioration in almost all of the GO 133 service quality metrics in most of the company's wire centers over the 2018-2019 period. With Frontier having invested nearly a billion dollars in California since acquiring the company, this is not the outcome that one would expect to see.
87. CPUC Resolution T-17731, issued March 4, 2021.
88. Frontier response to CD DR 13-F-03(d).


ECONOMICS AND
TECHNOLOGY, INC.

## 

## Key findings addressed in this Chapter

- While we have attempted to compile the requested data on the relationships between ILEC service quality and communities' income level and racial makeup, we caution the Commission as to both the precision and usefulness of these results, and recommend that their use at this time be limited solely to considering the need for a more detailed and more granular investigation.
- The incidence of service outages for both AT\&T and Frontier appears to be somewhat lower in higher income areas, although the companies' responses to those service outages that do occur exhibit no similar income-related pattern.
- Average gross plant additions investment per access line are similar in all five quintiles for both AT\&T and Frontier, but wire centers serving higher income areas tend to have a lower rate of out-of-service incidents and greater broadband availability than their counterparts in lower income communities.
- For both AT\&T and Frontier, there is no indication that wire centers that serve relatively higher percentages of Black, Hispanic or Non-White populations exhibit more frequent incidents of service outages; moreover, as with our income analysis, there does not appear to be any observable pattern for either company associated with any of the service restoration metrics.


## ILEC SERVICE QUALITY AND COMMUNITY DEMOGRAPHICS

## TABLE OF CONTENTS

Introduction ..... 447
Median household income, ILEC investment, and service quality ..... 448
Investment ..... 449
Frequency and restoration of service outages ..... 475
AT\&T California ..... 475
Frontier California ..... 482
Racial characteristics of the population being served and service quality ..... 489
Conclusion ..... 502
Tables and Figures
Table 11.1: AT\&T California and Frontier California Wire Center Serving Area Median Household Income Categories ..... 449
Table 11.2: AT\&T California Median Household Income and 2018-29 Gross Plant Additions ..... 450
Table 11.3 AT\&T California Wire Center Serving Area Median Household Income Based on 2018 American Community Survey Data ..... 451
Table 11.4 AT\&T California and Frontier California Weighted Average MedianHousehold Income in Wire Center Serving Areas with and WithoutBroadband Service Upgrades Based on 2018 American CommunitySurvey Data467
Table 11.5: Frontier California Median Household Income and 2018-29 Gross Plant Additions ..... 468

Table 11.6: Frontier California Weighted Average Median Household Income in Wire Center Serving Areas With and Without Broadband Service Upgrades Based on 2018 American Community Survey Data

Figure 11.1: AT\&T California Service Outages per 100 Access Lines per Month for the Five Median Household Income Quintiles, 2018-2019

Figure 11.2: AT\&T California Percent of Service Outages Restored Within 24 Hours for the Five Median Household Income Quintiles, 2018-2019

Figure 11.3: AT\&T California Average Duration of Service Outages for the Five Median Household Income Quintiles, 2018-2019

Figure 11.4: California Average Number of Days Required to Restore $90 \%$ of Service Outages for the Five Median Household Income Quintiles, 2018-2019

Figure 11.5: AT\&T California Service Outages per 100 Access Lines per Month, Longterm trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.6: AT\&T California Percent of Service Outages Restored Within 24 Hours, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.7: AT\&T California Average Duration of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.8: AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.9: Frontier California Service Outages per 100 Access Lines per Month for the Five Median Household Income Quintiles, 2018=2019

Figure 11.10: Frontier California Percent of Service Outages Restored Within 24 Hours for the Five Median Household Income Quintiles, 2018=2019

Figure 11.11: Frontier California Average Duration of Service Outages for the Five Median Household Income Quintiles, 2018=2019484

Figure 11.12: Frontier California Average Number of Days Required to Restore 90\% of Service Outages for the Five Median Household Income Quintiles, 2018=2019484

Figure 11.13: AT\&T California Service Outages per 100 Access Lines per Month, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.14: AT\&T California Percent of Service Outages Restored Within 24 Hours, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.15: AT\&T California Average Duration of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.16: AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019

Figure 11.17: AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.18: AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.19: AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.20: AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.21: AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.22: AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.23: AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.24: AT\&T California Average Number of Days Required to Restore 90\% of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.25: AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.26: AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.27: AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.28: AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.29: Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.30: Frontier California Percent of Service Outages Restored Within 24 Hours byRacial Population Characteristics - Percent Black, 2018-2019

Figure 11.31: Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.32: Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019

Figure 11.33: Frontier California Service Outages per 100 Access Lines per Month by RacialPopulation Characteristics - Percent Hispanic, 2018-2019

Figure 11.34: Frontier California Percent of Service Outages Restored Within 24 Hours byRacial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.35: Frontier California Average Duration of Service Outages by Racial PopulationCharacteristics - Percent Hispanic, 2018-2019

Figure 11.36: Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019

Figure 11.37: Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.38: Frontier California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.39: Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019

Figure 11.40: Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019

## Introduction

There is considerable variation in service quality performance across each ILEC's wire centers. In our Phase 1 study, we undertook to preliminarily examine whether there was any observable relationship between a community's median household income and the treatment that its ILEC was providing customers with respect to service quality. That examination was limited to AT\&T California wire centers, and its results were discussed in Chapter 11 of our Phase 1 report, at pp. 518-522.

As addressed in Chapter 4A of our Phase 1 report (at pp. 206-210), we had observed that wire centers with the lowest rates of customer drop-off had experienced the poorest levels of service quality. At first glance, this outcome seems anomalous. All else equal, one would expect that areas with the poorest service quality overall would exhibit the higher rates of customer defection away from the ILEC and over to alternative providers, but in fact the result was precisely the opposite - communities experiencing the highest levels of service quality were also the ones with the highest rates of service disconnections. The likely explanation for this result was that customers in areas with the lowest rates of competitive loss were those where customers had access to the fewest competitive choices. Whether deliberate or coincidental, AT\&T appeared to be directing its attention to service quality and making investments in those areas most heavily impacted by competition, paying the least attention to areas where its customers were most captive. Since competitors were likely to focus upon markets at the higher end of the economic spectrum, we wanted to see whether areas with the lowest levels of household income were also those receiving the poorest service quality.

All of the service quality metrics we studied exhibited a degradation in service quality over the 2010-2017 study period. We classified wire center serving areas into one of five median household income quintiles, and found that:
(1) Out-of-service incidents per 100 access lines in service were lowest in the highest income areas, highest in the lowest income areas;
(2) Out-of-service durations were shortest in the highest income areas;
(3) Areas with the highest household incomes also had the highest percentage of outages cleared within 24 hours; and
(4) High income areas generally required the fewest days to clear $90 \%$ of out-of-service conditions.

The highest income areas had the lowest incidence of service outages; the shortest out-ofservice durations, the highest percentage of outages cleared within 24 hours, and had the fewest number of days required to clear $90 \%$ of the service outages that did occur.

We had found that wire centers that had been upgraded with fiber optic distribution facilities tended to exhibit superior service quality overall, and noted that average median annual household incomes were highest in areas that were being served by wire centers that had such upgrades. Although fiber deployment and the availability of broadband were not necessarily critical to the provision of high-quality legacy POTS services, their presence provided an indication that the ILEC had committed investment dollars to such locations, and these plant upgrades had also contributed to fewer POTS service outages overall.

For Phase 2, we have been tasked with extending this examination to include Frontier California as well as AT\&T California, and also to examine whether there was any evidence of service quality differences in communities with varying racial characteristics. As we discuss below, we have determined that the incidence of service outages for both AT\&T and Frontier appears to be somewhat lower in higher income areas, although the companies' responses to those service outages that do occur do not appears to have a similar relationship with median household income levels. For AT\&T, there is some indication that communities with proportionately higher black and Hispanic populations do experience higher incidences of service outages, but this pattern does not seem to be present for Frontier. For both ILECs, there is no discernable pattern that responses to those service outages that do occur is linked to racial demographics.


## Median household income, ILEC investment, and service quality

In order to categorize AT\&T and Frontier wire centers into income quintiles, we utilized population and household count data from the 2010 Decennial Census ${ }^{89}$ as well as Median Household Income ("MHI") data from the 2018 US Census Bureau American Community Survey ("ACS") database. ${ }^{90}$ The 2010 Census reports demographic data at the Census Block level (15-digit geographic identifier), the most granular geographic area available, while the ACS reports MHI at the Census Tract level (11-digit geographic identifier). To best approximate the average MHI of households located within each AT\&T or Frontier wire center footprint, we weight 2018 Census Tract level MHI by 2010 Census Block level household counts. There are roughly 500,000 Census Blocks in AT\&T California's operating areas. Since all of the service quality metrics were developed at the individual wire center level, we needed to associate each
89. 2010 Decennial Census, https://www.census.gov/data/developers/data-sets/decennial-census.html
90. 2018 American Community Survey, https://www.census.gov/programs-surveys/acs/data.html

Census Block with its serving wire center. This was accomplished for AT\&T California utilizing a mapping analysis that was prepared for us by the Communications Division's GIS staff. Frontier provided us with a similar mapping, except that this was done at a Census Tract level. ${ }^{91}$ Census Tracts are larger, and include many individual Census Blocks. There are approximately 2,600 Census Tracts in Frontier California operating areas. Because Frontier's data was at the Census Tract level, individual Census Block household data was aggregated to the corresponding Census Tracts in order to develop wire center level MHI statistics.

Each ILEC's wire centers were ranked by their respective MHIs, and were then classified into one of five quintile categories based upon the MHI for the wire center. The MHI brackets for each of the two ILECs are summarized in Table 11.1 below: Tables 11.3 and 11.6 provide the MHI for each AT\&T California and Frontier California wire center, respectively, sorted from lowest to highest MHI, each grouped into five quintiles.

\left.| Table 11.1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| WIRE CENTER SERVING AREA MEDIAN HOUSEHOLD INCOME CATEGORIES |  |  |  |  |$\right]$| Frontier California |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| AT\&T California |  |  |  | No. of Wire <br> Centers |
| Quintile |  |  |  |  |

## Investment

AT\&T California has advised us that, as of the end of 2017, 557 of its 615 wire centers had been upgraded with facilities supporting broadband services, ${ }^{92}$ and has further confirmed that no additional wire centers had received such upgrades after 2017. ${ }^{93}$ Frontier California has identified three categories of wire centers -- those with FiOS availability, those without FiOS but where some form of broadband Internet access service is available, and those where no broadband services are offered.

[^31]During 2018 and 2019, AT\&T California made Gross Plant Additions identified to individual wire centers totaling approximately $\$ 2$-billion. We have calculated the weighted (by POTS access lines in service as of December 31, 2018, the midpoint of the Phase 2 study period) average Median Household Income of the areas served by these wire centers in each of the specified quintiles, together with the average Gross Plant Addition investment per access line, average monthly out-of-service incidents per 100 access lines, and the percentage of wire centers equipped for broadband services, as summarized in Table 11.2 below. As the data indicate, although average gross plant additions per access line are similar in all five quintiles, wire centers serving higher income areas tend to have fewer out-of-service incidents and greater broadband availability than their counterparts in lower income communities.

Table 11.2   AT\&T CALIFORNIA   MEDIAN HOUSEHOLD INCOME AND 2018-19 GROSS PLANT ADDITIONS						
Quintile	Households	Median Household Income	$\begin{aligned} & \text { Access } \\ & \text { Lines } \\ & \text { Jan } 2019 \end{aligned}$	2018-2019 Gross Plant Additions per Access Line	Out-of-   Service per 100 ALs per month	Pct Wire   Centers with   Broadband
0\%-20\%	1,142,727	\$36,673	205,299	\$1,099	2.29	83.6\%
20\%-40\%	1,654,443	\$48,591	305,857	\$1,131	1.77	84.3\%
40\%-60\%	2,611,078	\$59,866	434,625	\$1,018	1.59	95.0\%
60\%_80\%	2,610,669	\$75,927	485,362	\$900	1.36	97.5\%
80\%-100\%	2,565,025	\$105,167	473,132	\$1,268	0.96	98.3\%
Total   AT\&T-CA	10,583,942	\$70,540	1,904,275	\$1,077	1.59	91.7\%
NOTE: Individual Census Blocks may include parts of more than one wire center and more than one ILEC serving area. The total number of households passed by AT\&T shown here may well exceed those actually present in AT\&T California's service area. However, for our purposes, the relevant calculation is the Median Household Income, which would apply for the entire Census Block irrespective of which ILEC serves a particular household.						

The incidence of service outages for both AT\&T and Frontier appears to be somewhat lower in higher income areas, although the companies' responses to those service outages that do occur have no similar income-related pattern.

Table 11.3 provides the total Gross Plant Addition investment and the per-access line Gross Plant Additions for each AT\&T California wire center, along with the median household income.

ECONOMICS AND


		                 皆             $\stackrel{\circ}{2}$                    





##   

## ${ }_{\text {LAKE }}^{\text {LOS ANGELES }}$

 TULARE mENDOCINO MENDOCINOTULARE
MADERA MENDOCINO TULARE
LOANGELES落華 SAN DIEGO
BUTTE $\underset{~}{2}$ 룰울

> 2
> EHAMA

FRESNO

 GLENN
SISKIYOU以


々



$\qquad$


宗灾 | N |
| :--- |
|  |
|  |
| 0 |
| 0 |
| 3 |
| 3 |

 둗










$\qquad$
 K
$\frac{\Sigma}{c}$
0
0







$\qquad$ WOOSI $\qquad$ CLEARLAKE OAKS
PORTERVILLE RED BLUFF UPPERLAKE
LSAN－MADISON 03 VANHOE BOONVILLE
FARMERSVILLE FARMERSVILLE
FIREBAUGH WILLITS
CAMP NELSON CAMP NELSON
BELL SHAFTER
WARNER SPRINGS WARNER SPRINGS
CHALLENGE ANGELUS SELANO
SPRINGVILLE
FRESNO FRESNO－CLINTON
SOUTH GATE $\qquad$ LOS MOLINOS
LSAN－PLYMOUTH BURREL
SHASTA LAKE GERBER
LSAN－MADISON 02 LSAN－MADISON 02
LSAN－UNION LSAN－UNION
LATON ELK CREEK YREKA
OROVILLE－EAST $\qquad$ CAMPTONVILLE ANDERSON CROWS LANDING
HAMILTON CITY $\qquad$ BAKERSFIELD－EMPIRE
PARADISE－MAIN SELMA WILLOWS
MONTAGUE COULTERVILLE
BRIDGEVILLE








－Niल

[^32]


※
．
$\stackrel{\circ}{0}$
告
N
is
$\stackrel{\text { ® }}{\circ}$

 ．


筑等


～

 응靬角










A substantial focus of AT\&T and Frontier plant investment in recent years has been directed at upgrading its feeder and distribution outside plant to fiber optics aimed at upgrading the companies' ability to offer high-speed broadband Internet access and video services to customers. It appears that, to some extent, both companies have directed these upgrades toward higher income communities, as shown in Table 11.4.

Table 11.4				
AT\&T CALIFORNIA AND FRONTIER CALIFORNIA WEIGHTED AVERAGE MEDIAN HOUSEHOLD INCOME IN WIRE CENTER SERVING AREAS WITH AND WITHOUT BROADBAND SERVICE UPGRADES BASED ON 2018 AMERICAN COMMUNITY SURVEY DATA				
AT\&T California			Frontier California	
Category	Wtd Avg MHI	No. of Wire Centers	Wtd Avg MHI	No. of Wire Centers
No broadband	\$ 50,322	50	51,385	35
FTTP / FiOS				66
Other broadband	\$ 70,616	555	75,252	178
NOTE: AT\&T California has deployed FTTP in certain areas, but we do not have the breakdown of such deployment at the individual wire center level. Hence, for AT\&T, "Other broadband" should be interpreted as "All broadband," including both FTTN and FTTP locations.				

During 2018 and 2019, Frontier California made Gross Plant Additions identified to individual wire centers totaling approximately $\$ 562$-million. As we did for AT\&T California, we calculated the similar weighted average Median Household Income of the areas served by these wire centers in each of the five quintile groups, together with the average Gross Plant Addition investment per access line, as summarized in Table 11.5 below. The results are similar to what we found for AT\&T. Average gross plant additions per access line were actually higher in the lower income quintiles. However, as with AT\&T, Frontier wire centers serving higher income areas tended to have fewer out-of-service incidents and greater broadband availability than their counterparts in lower income communities.

> Average gross plant additions investment per access line are similar in all five quintiles for both AT\&T and Frontier, but wire centers serving higher income areas tend to have a lower rate of out-of-service incidents and greater broadband availability than their counterparts in lower income communities.

Table 11.5

## FRONTIER CALIFORNIA

MEDIAN HOUSEHOLD INCOME AND 2018-19 GROSS PLANT ADDITIONS

Quintile	Households	Median Household Income	Access Lines Jan 2019	2018-2019 Gross Plant Additions per Access Line	Out-ofService per 100 ALs per month	Pct Wire Centers with Broadband
0\%-20\%	294,942	40,438	71,907	\$ 1,249	1.85	51.2\%
20\%-40\%	759,127	53,421	136,170	\$ 2,261	1.21	84.1\%
40\%-60\%	734,943	65,579	109,751	\$ 694	1.24	88.1\%
60\%_80\%	989,671	77,088	260,326	\$ 599	0.93	95.1\%
80\%-100\%	1,284,373	97,266	319,981	\$ 1,170	0.61	100.0\%
Total   Frontier-CA	4,063,056	74,302	898,135	5,973	1.17	83.6\%

NOTE: Individual Census Tracts may include parts of more than one wire center and more than one ILEC serving area. The total number of households passed by Frontier shown here may thus exceed those actually present in Frontier California's service area. However, for our purposes, the relevant calculation is the Median Household Income, which would apply for the entire Census Tract irrespective of which ILEC serves a particular household.

Table 11.6 provides the total Gross Plant Addition investment and the per-access line Gross Plant Additions for each AT\&T California wire center, along with the median household income.




Table 11.6											
FRONTIER CALIFORNIA   WIRE CENTER REPORTING UNIT SERVING AREA MEDIAN HOUSEHOLD INCOME BASED ON 2018 AMERICAN COMMUNITY SURVEY DATA											
QUINTILE 3: MEDIAN HOUSEHOLD INCOME \$59,400-\$72,000											
Reporting Unit CLLIs	Reporting Unit Name	County	Population	Households	No. of Census Tracts	$\begin{aligned} & \text { Median } \\ & \text { Household } \\ & \text { Income } \end{aligned}$	Access Lines as of Jan 2019	Gross Plant Additions 2018-2019	Avg Gross Plant Addition per Access Line	OOS per 100 ALs per month	Broad-band Offered
BGPICAXF	BIG PINE	INYO	7,043	3,033	3	59,572	163	280,007	1,718	0.80	YES
RNBGCAXF	RANDSBURG	KERN	11,427	3,650	${ }^{2}$	60,153	42	211,524	5,036	0.69	YES
YERMCAXF	YERMO	SAN BERNARDINO	19,967	7,524	4	60,365	247	513,081	2,077	1.85	YES
TAFTCAXF/FLWSCAXF/MRCPCA)	FELLOWS	KERN	64,720	18,725	15	60,914	1,068	600,967	563	0.82	NO
BSHPCAXG	BISHOP	INYO	16,063	6,858	5	61,621	1,804	939,399	521	0.63	YES
JNLKCAXF	JUNE LAKE	MONO	5,965	2,538	2	61,781	275	321,230	1,168	0.44	YES
POMNCAXF	POMONA	LOS ANGELES	139,848	35,938	28	62,056	5,570	3,009,499	540	0.53	YES
PNYNCAXF	PINYON PINES	RIVERSIDE	16,423	7,215	5	62,135	138	134,336	973	1.99	YES
ONTRCAXF	ONTARIO	SAN BERNARDINO	140,375	37,997	28	63,421	12,483	8,921,361	715	0.36	YES
CHLKCAXF	CHINA LAKE	KERN	14,513	5,840	3	63,473	10	171,121	17,112	\#N/A	YES
PERSCAXF	PERRIS	RIVERSIDE	170,650	44,750	26	63,910	2,834	3,791,804	1,338	0.81	YES
LNCSCAXF/EDMTCAXF/SNYMCA)	EDGEMONT	RIVERSIDE	382,968	110,800	82	64,063	7,632	8,298,291	1,087	0.34	YES
PLDSCAXF/THPLCAXF	PALM DESERT	RIVERSIDE	65,635	30,669	21	64,337	11,235	2,150,963	191	0.99	YES
WEMRCAXF	WEIMAR	PLACER	9,541	3,861	${ }^{2}$	64,344	360	257,275	715	1.10	NO
PCRVCAXF	PICO RIVERA	LOS ANGELES	55,487	14,776	10	64,406	7,276	1,727,179	237	0.79	YES
CRLKCAXF	CROWLEY LAKE	MONO	11,700	4,729		64,599	226	232,392	1,028	0.54	YES
MMLKCAXF	MAMMOTH LAKES	MONO	11,700	4,729	${ }^{2}$	64,599	1,893	289,274	153	0.47	YES
SNFNCAXG	SAN FERNANDO	LOS ANGELES	65,577	16,052	15	65,044	3,294	2,019,712	613	0.63	YES
SERNCAXG	SEA RANCH	SONOMA	4,120	1,973	${ }^{2}$	65,088	555	454,904	820	1.14	YES
TMCVCAXH	TIMBER COVE	SONOMA	4,120	1,973	${ }^{2}$	65,088	412	192,403	467	1.38	YES
PACMCAXF	PACOIMA	LOS ANGELES	131,034	30,181	35	65,343	3,583	2,077,214	580	0.57	YES
DWNYCAXF/DWNYCAXG/BLGRC,	BELL GARDENS	LOS ANGELES	203,129	59,076	40	65,790	9,204	7,620,203	828	0.90	YES
LMCVCAXF	LEMON COVE	TULARE	10,723	3,840	${ }^{2}$	66,139	82	197,903	2,413	0.99	YES
SNTMCAXF	SANTA MARIA	SANTA BARBARA	122,553	34,389	21	66,301	9,401	3,090,196	329	0.35	YES
SNPLCAXF	SANTA PAULA	VENTURA	54,418	16,174	12	66,639	2,185	1,369,991	627	1.21	YES
BNTNCAXF	BENTON	MONO	3,463	1,499	1	66,786	93	84,421	908	1.82	NO
ARHDCAXF	ARROWHEAD FARMS	SAN BERNARDINO	18,900	7,238	${ }^{6}$	66,869	1,938	1,626,913	839	0.91	YES
BRDNCAXF	bermuda dunes	RIVERSIDE	65,532	29,239	16	67,305	\#N/A	649,431	\#N/A	\#N/A	YES
DNLPCAXF	DUNLAP	FRESNO	6,304	2,383	1	67,417	222	1,055,035	4,752	6.26	YES
SVYFCAXF	SQUAW VALLEY	FRESNO	6,304	2,383	1	67,417	127	576,469	4,539	3.21	YES
BLPKCAXF	BALDWIN PARK	LOS ANGELES	140,968	34,584	30	67,579	18	2,789,418	154,968	\#N/A	YES
MCKTCAXF	MCKITTRICK	KERN	11,798	3,350	2	67,823	151	81,203	538	1.47	NO
CUYMCAXF	CUYAMA	SANTA BARBARA	7,795	2,975	2	68,124	156	23,095	148	1.23	NO
SNGRCAXF	SANGER	FRESNO	50,228	15,087	9	68,217	1,944	682,722	351	1.47	YES
YUCPCAXF	YUCAIPA	SAN BERNARDINO	61,118	21,985	11	68,585	\#N/A	1,347,191	\#N/A	0.92	YES
SPLVCAXF	SEPULVEDA	LOS ANGELES	105,941	28,950	26	68,880	4,804	4,073,543	848	0.60	YES
BDGRCAXF	badger	tulare	11,446	4,465		69,471	66	103,341	1,566	6.01	YES
GGvGCAXF	GRANT GROVE VILLAG	FRESNO	11,446	4,465		69,471	247	565,602	2,290	1.08	YES
BLFLCAXF	BELLFLOWER	LOS ANGELES	97,920	31,195	22	69,504	16	1,427,814	89,238	\#N/A	YES
GDLPCAXG	GUADALUPE	SANTA BARBARA	19,643	6,284	3	69,715	854	440,862	516	0.34	YES
PNCKCAXF	PINE CREEK	INYO	5,181	2,198	5	70,264	112	179,572	1,603	0.86	YES
LNBHCAXG	LONG BEACH	LOS ANGELES	87,820	29,373	25	71,389	17,031	11,624,434	683	0.55	YES




## Frequency and restoration of service outages

AT\&T California. The frequency with which service outages occur in any given wire center is driven, in large measure, by the physical condition of the ILEC's central office and outside plant in the wire center's serving area. The rapidity with which a service outage is restored is also affected by the condition of the plant, but may be more directly related to the available resources that the ILEC is able to deploy to correct the problem. For this reason, we have examined these two aspects of service quality separately.

Figures 11.1 through 11.4 are bar graphs showing the values of the four service quality metrics in each of the five MHI quintiles. Figure 11.1 presents the number of service outages per 100 access lines separately for each of the five MHI quintiles, for AT\&T California during the 2018-2019 Phase 2 study period. As the chart shows, there appears to be a clear relationship between the frequency of service outages and the median household income of the communities in each of the five MHI quintiles, with the lowest rates of service outages occurring in the highest income communities. Figures 11.2 through 11.4 present three service restoration metrics, also separately for each of the five MHI quintiles. Figure 11.2 shows the percentage of service outages that are restored within the first 24 hours; Figure 11.3 shows the average duration of service outages; and Figure 11.4 shows the average number of days required for AT\&T to clear $90 \%$ of service outages. Although these metrics all vary across the five MHI quintiles, there is no obvious relationship between these metrics and the MHI for each quintile. Thus, while the overall condition of AT\&T California's plant may be better in higher income communities, the company's response to addressing and resolving service outages appears to be more uniform in all income areas.

Figures 11.5 through 11.8 provide long-term trend lines for each of these four metrics over the full 2010-2019 Phase 1/Phase 2study period. The clear relationship between the outage rate and MHI has persisted throughout the ten years, with the higher income communities consistently experiencing the lowest outage rates. However, no such pattern is discernable for the three restoration metrics.



Figure 11.1. AT\&T California Service Outages per 100 Access Lines per Month for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.2. AT\&T California Average Duration of Service Outages for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.3. AT\&T California Percent of Service Outages Restored Within 24 Hours for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.4. AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.5. AT\&T California Service Outages per 100 Access Lines per Month, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.


Figure 11.6. AT\&T California Average Duration of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.



Figure 11.7. AT\&T California Percent of Service Outages Restored Within 24 Hours, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.


Figure 11.8. AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.

Frontier California. Figures 11.9 through 11.12 present the corresponding bar graphs for Frontier California wire centers. The results for Frontier are quite similar to those for AT\&T: The Frontier data also shows a clear relationship between income levels and the frequency of service outages, with the highest income communities experiencing the lowest outage rates (Figure 11.9). And as with AT\&T, the three restoration metrics show no discernable household income-related pattern (Figures 11.10 through 11.12).

Figures 11.13 through 11.16 provide long-term trend lines covering the period under Frontier ownership, April 2016 through December 2019. And, as with AT\&T, there is no discernable income-driven pattern with respect to any of the restoration metrics.

ECONOMICS AND


Figure 11.9. Frontier California Service Outages per 100 Access Lines per Month for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.10. Frontier California Percent of Service Outages Restored Within 24 Hours for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.11. Frontier California Average Duration of Service Outages for the Five Median Household Income Quintiles, 2018-2019.


Figure 11.12. Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages for the Five Median Household Income Quintiles, 2018-2019.



$$
-\$ 0-\$ 46 \mathrm{~K} \quad-\$ 46 \mathrm{~K}-\$ 59 \mathrm{~K} \quad-\$ 59 \mathrm{~K}-\$ 72 \mathrm{~K} \quad-\$ 72 \mathrm{~K}-\$ 85 \mathrm{~K} \quad-\$ 85 \mathrm{~K} \text {-over }
$$

Figure 11.13B Income(FTR)

Figure 11.13. Frontier California Service Outages per 100 Access Lines per Month, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.


Figure 11.14. Frontier California Average Duration of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.


Figure 11.15. Frontier California Percent of Service Outages Restored Within 24 Hours, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.



Figure 11.16. Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages, Long-term trends for the Five Median Household Income Quintiles, 2010-2019.

## Racial characteristics of the population being served and service quality

ETI was also tasked with examining whether there is any discernable pattern or relationship between ILEC service quality and the racial characteristics of individual ILEC service areas. To undertake this analysis, we utilized data from the US Census Bureau's 2010 American Community Survey ("ACS"), the most current source of this type of information. ACS compiles racial and nationality data at the individual Census Block level, which we aggregated to AT\&T and Frontier wire center serving areas as described above. This was necessary because the most granular level of ILEC service quality data that is available is at the wire center level. While we have attempted to compile this information, we caution the Commission as to both its precision and usefulness. Individual wire centers typically serve populations ranging from a few thousand in rural areas to 100,000 or more in urban areas. These serving areas typically embrace a large variety of diverse populations, both residential and nonresidential. Our aggregations necessarily obscure the details of individual communities within a given wire center serving area. In addition, there is likely some correlation between racial and income attributes, which we have not expressly examined or controlled for. Thus, it is possible that the variation in service quality metrics that appear to be linked to race may well be attributable to income differentials.

The ACS utilizes several different demographic population metrics, some of which are based upon race (e.g., "Black" and "Non-White"), whereas others are based upon nationality (e.g., "Hispanic"). Because there may be overlaps as between these two types of population metrics, they cannot be combined. We have prepared several sets of bar graphs corresponding to the ones we prepared for the median household income analysis, which are provided as Figures 11.17 through 11.28 for AT\&T, and Figures 11.29 through 11.40 for Frontier.


We have found no consistent relationship between the percentage of minority populations in wire center serving areas and the incidents of service outages or any of the service restoration metrics (see Figures $11.17,11.21,11.25,11.29,11.33$ and 11.37). Also, and as with our income analysis, there does not appear to be any observable pattern associated with any of the service restoration metrics and the extent of minority populations. As these graphs indicate, there is no identifiable or consistent relationship between any of the racial attributes and either the frequency of service outages or the rapidity with which restorations occur, for either of the two ILECs.


Figure 11.17. AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.18. AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.19. AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.20. AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.21. AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.22. AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.23. AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.24. AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.25. AT\&T California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.26. AT\&T California Average Duration of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.27. AT\&T California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.28. AT\&T California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.29. Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.30. Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.31. Frontier California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.32. Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Black, 2018-2019.


Figure 11.33. Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.34. Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.35. Frontier California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.36. Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Hispanic, 2018-2019.


Figure 11.37. Frontier California Service Outages per 100 Access Lines per Month by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.38. Frontier California Average Duration of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.39. Frontier California Percent of Service Outages Restored Within 24 Hours by Racial Population Characteristics - Percent Non-White, 2018-2019.


Figure 11.40. Frontier California Average Number of Days Required to Restore $90 \%$ of Service Outages by Racial Population Characteristics - Percent Non-White, 2018-2019.

## Conclusion

While there is some evidence that both AT\&T California and Frontier California may be devoting more attention toward the condition of their central office and distribution plant in higher income and non-minority areas, there is no evidence of any inherent racial bias or redlining, nor is there any indication that higher income or non-minority communities are receiving more favorable treatment with respect to service restorations.

As we have noted, these results are at best an indication that more detailed examination of ILEC service quality performance below the individual wire center level may be warranted. A more granular analysis of this sort is well outside the scope of this Study. We do not consider the results presented here to be conclusive, but at best suggestive of a potential concern that could require more detailed investigation.

ECONOMICS AND

## $3 \begin{aligned} & \text { PHYSICAL AND ENVIRONMENTAL } \\ & \text { FACTORS AFFECTING ILEC SERVICE } \\ & \text { QUALITY }\end{aligned}$

## Principal observations and takeaways

- Telephone service outages appear to be highly dependent upon weather conditions, specifically, the amount of precipitation in the area served.
- The strong relationship between rainfall and the rate of service outages provides a strong indication that the ILEC distribution networks are not as robust as they need to be, and clearly lack the resiliency to withstand significant weather events.
- Overall, we observed little correlation between the incidence of major wild fires and ILEC service quality. Wildfires occur mainly during hot summer and fall months when rainfall is minimal, whereas OOS incidents arise during the periods of heaviest precipitation, which occurs during late fall and winter months.


# PHYSICAL AND ENVIRONMENTAL FACTORS 

AFFECTING ILEC SERVICE QUALITY

## TABLE OF CONTENTS

Introduction ..... 506
Effects of precipitation on out-of-service incidents ..... 506
Effects of major wildfires on out-of-service incidents ..... 532
Tables and Figures
Table 13.1: California Census Regions ..... 507
Table 13.2: AT\&T California - Relationship Between Precipitation and Out-of-Service Incidents2010-2019 ..... 509
Table 13.3: $\quad$ Frontier California - Relationship Between Precipitation and Out-of-Service Incidents 2016-2019 ..... 509
Table 13.4: AT\&T California - Relationship Between Wildfire Events and Out-of- Service Incidents 2013-2019 ..... 533
Table 13.5: $\quad$ Frontier California - Relationship Between Wildfire Events and Out-of-Service Incidents 2016-2019 ..... 533
Table 13.6 AT\&T California - County-Level Relationships Between Wildfire Events and Out-of-Service Incidents 2013-2019 ..... 555
Table 13.7 Frontier California - County-Level Relationships Between Wildfire Events and Out-of-Srvice Incidents 2016-2019 ..... 557
Table 13.8: AT\&T California Infrastructure Investment in High-risk Wildfire Areas ..... 559
Table 13.9: Frontier California Infrastructure Investment in High-risk Wildfire Areas ..... 561
Table 13.10: Rank Correlations Between Total Wildfire Acres Burned (2013-2020) and ILEC Gross Plant Investments (2018-2019) ..... 562
Figure $13.1 \quad$ California Census Regions ..... 508

Figures 13.2 - AT\&T California - Correlation between Monthly Precipitation Rate and the 13.11 Monthly Rate of OOS Incidents per 100 Access Lines by Census Region

Figures 13.12- Frontier California - Correlation between Monthly Precipitation Rate and the
13.21 Monthly Rate of OOS Incidents per 100 Access Lines by Census Region

Figures 13.22- AT\&T California - Correlation between Wildfire Events and and the
13.31 Monthly Rate of OOS Incidents per 100 Access Lines by Census Region 534

Figures 13.32- Frontier California - Correlation between Wildfire Events and the Monthly
13.41 Rate of OOS Incidents per 100 Access Lines by Census Region

Appendix 13-1: AT\&T California - County-Level Regression Analyses - Wildfires vs.
Telephone Service Outages
Appendix 13-2: Frontier California - County-Level Regression Analyses - Wildfires vs. Telephone Service Outages617

## Introduction

In Chapter 4, we observed that $16.8 \%$ of the roughly 5 -million AT\&T out-of-service conditions over the 2010-2017 Phase 1 study period had been attributed to "Heavy Rain," "Weather," "Moisture," or "Wet Plant." Over the Phase 2018-2019 period, that number almost doubled, to $29.6 \%$. In our Phase 1 Report, we provided details of our preliminary examination of the potential interaction of adverse weather - principally precipitation - upon the incidence of Out of Service (OOS) Trouble Reports. We had observed a seemingly erratic pattern of out-of-service incidents that, rather than exhibiting minimal variation over time, showed instances of Trouble Reports resulting in a customer's loss of telephone service that appeared to be highly variable from one period to the next. Moreover, similar month-to-month and quarter-to-quarter variation were observed both with respect to AT\&T California and Verizon/Frontier California, and across multiple wire centers, suggesting that some exogenous or outside condition or event was having a similar effect upon the ILECs' networks across a fairly broad geographic area. We hypothesized that one such exogenous source might well be weather or other environmental factors. In an attempt to explain the source of this variation, ETI compared the incidence of out-of-service trouble reports with weather conditions extant at the time, specifically, with the amount of precipitation that occurred in the area being served by a given wire center. Our analysis was, however, limited, and covered only the greater Los Angeles area.

## Effects of precipitation on out-of-service incidents

In Phase 1, we examined the pattern of AT\&T and Verizon/Frontier out-of-service incidents, respectively, in the greater Los Angeles area with the number of inches of precipitation experienced in the Los Angeles area on a monthly basis. We calculated the "coefficient of determination" $\left(R^{2}\right)$ between these two series. $R^{2}$ represents the percentage of variation in the "dependent" variable (the number of out-of-service incidents) that can be explained by variation in the independent or "explanatory" variable (inches of precipitation). For AT\&T, the $R^{2}$ was 0.4221 , indicating that roughly $42.21 \%$, of the variation in the incidence of an out-of-service condition is attributable to the amount of rainfall occurring in any given period. The $t$-statistic associated with the Precipitation coefficient was 8.29 , placing the computed relationship between inches of precipitation and out-of-service incidents well in excess of the $99 \%$ confidence level. For Verizon/Frontier, the $R^{2}$ was almost the same, at 0.3976 , and the $t$-statistic associated with the Precipitation coefficient was 7.75 , also placing the computed relationship between precipitation and out-of-service incidents well in excess of the $99 \%$ confidence level. Weather conditions may help to explain the variations in OOS situations, but they do not explain the long-term upward trends both in numbers and average duration that the data appear to suggest.

For Phase 2, we have been asked to extend this analysis to cover the full 2010-2019 time frame, and to study a broader geographic area covering all of California. To accomplish this, we compiled precipitation statistics from the National Oceanic and Atmospheric Administration's ("NOAA") Global Summary of the Month ("GSOM") dataset. GSOM provides detailed estimates of various meteorological measurements on a monthly basis sourced from weather stations across the United States. The US Census Bureau has divided California into ten (10)
"Census Regions," as illustrated in Figure 13.1 below. Table 13.1 identifies the individual counties that are included within each Census Region.

		Table 13.1		
	CALIFORNIA CENSUS REGIONS		,	Counties
:---	,	Butte, Calusa, El Dorado, Glenn, Lassen, Modoc, Nevada, Placer,		
:---				
Plumas, Sacramento, Shasta, Sierra, Siskiyou, Sutter, Tahama,				
Yolo, Yuba	,			

ETI identified NOAA weather station locations first by county, then aggregated these by averaging total monthly precipitation for all of the counties included within each of the ten Census regions. We then aggregated individual wire center Trouble Report statistics by county and then by Census Region.

We prepared two graphs for each Census Region. The first graph in each set is a time-series plot of monthly inches of precipitation (blue line) and monthly out-of-service reports per 100 access lines (red line). The second graph in each set provides a scatter diagram of the independent variable (monthly inches of precipitation) on the $x$-axis and the dependent variable (monthly OOS per 100 access lines) on the $y$-axis, along with a plotted regression line. The regression equation is also provided, along with the Coefficient of Determination $R^{2}$ and $t$ statistic as computed for the regression. Figures 13.2 through 13.11 provide graphs for each Census Region's monthly precipitation rate (in inches) and the monthly rate of OOS incidents per 100 access lines for AT\&T California over the full 2010-2019 period ( 120 months). Figures 13.12 through 13.21 provide similar graphs for each Census Region for areas served by Frontier California over the 2016 through 2019 period ( 45 months).

Tables 13.2 and 13.3 below provide the calculated Coefficients of Determination $\left(R^{2}\right)$ and $t$ statistics for each of the ten Census Regions and for each of AT\&T California and Frontier California, respectively. For convenience, we have also indicated the Figure number for the graphs associated with each Census Region.

Figure 13.1

## Census 2020 Regions



Region number and description
1 - Superior Califomia
2 - North Coast
3 - San Francisco Bay Area
4 - Northern San Joaquin Valley
5-Central Coast
6-Southem San Joaquin Valley
7 - Inland Empire
8-Los Angeles County
9 - Orange County
10-San Diego - Imperial

Region number and description
1-Superior Califormia
2 - North Coast
3 - San Francisco Bay Area
4 - Northern San Joaquin Valley
5 - Central Coast
6 - Southem San Joaquin Valley
7 - Inland Empire
8 - Los Angeles County

- Orange County

10-San Diego - Imperial


Table 13.3
FRONTIER CALIFORNIA RELATIONSHIP BETWEEN PRECIPITATION AND OUT-OF-SERVICE INCIDENTS 2016-2019

Census Region	Figures	No. of Wire Centers	Coefficient of Determination $R^{2}$	$t$-statistic
1 Superior California	13.12	4	. 471	3.187
2 North Coast	13.13	17	. 500	6.553
3 San Francisco Bay Area	13.14	4	. 652	8.969
4 Northern San Joaquin Valley	13.15	13	. 206	3.343
5 Central Coast	13.16	20	. 457	6.014
6 Southern San Joaquin Valley	13.17	38	. 545	7.171
7 Inland Empire	13.18	53	. 618	8.336
8 Los Angeles County	13.19	37	. 746	11.238
9 Orange County	13.20	4	. 587	7.812
10 San Diego - Imperial	13.21	2	. 099	2.178
Source: NOAA GSOM dataset; ETI analysis of Frontier California Out-of-Service incidents 2016-2019				

The results for both ILECs and across all ten Census Regions are both striking and consistent. For AT\&T California, the Coefficients of Determination $R^{2}$ varied between a low of .378 for the Inland Empire Region to a high of .756 for the San Francisco Bay Area Region. The high $t$-statistics for all ten Census Regions confirm that these correlations are statistically significant at the $99.9 \%$ confidence level. As noted, the Coefficient of Determination is interpreted as the percentage of variation in the Dependent Variable (OOS Incidents in this case) that is explained by variations in the Independent Variable (Inches of Precipitation). Thus, for the Bay Area, $75.6 \%$ of all AT\&T California Out-of-Service incidents can be attributed to the effects of precipitation. Even in the largely desert Inland Empire Region, 37.8\% of AT\&T California OOS incidents are attributable to precipitation.

For Frontier California, the Coefficients of Determination $R^{2}$ varied between a low of .099 for the San Diego / Imperial Region to a high of .746 for the Los Angeles County Region. The high $t$-statistics for seven of the Census Regions are statistically significant at the $99.9 \%$ confidence level; two others are statistically significant at the $99 \%$ level, and one at the $97.5 \%$ level. Note, however, that four of the ten Frontier Census Regions each have 4 or fewer wire centers, thus reducing the statistical significant of the calculated results. The Region with the lowest $R^{2}$ - San Diego - has only two Frontier wire centers, such that no statistical significance can legitimately be ascribed to this result. It is difficult to draw meaningful statistical inferences where the number of observations is as small as four or less, so for these four Census Regions the results are at best inconclusive.

The calculated regression lines for each Census Region identify the mathematical relationship extant between Inches of Precipitation and OOS per 100 Access Lines. For example, the regression equation for the San Francisco Bay Area is conputed as:

$$
y=0.741+0.147 x
$$

where

$$
\begin{aligned}
& y=\text { OOS per } 100 \text { Access Lines } \\
& x=\text { Monthly Inches of Precipitation }
\end{aligned}
$$

The " $y$-intercept" value here is 0.741 , which is interpreted as estimating that in a month with zero inches of precipitation, the predicted number of OOS per 100 Access Lines would be 0.741 . In a month with, for example, three (3) inches of precipitation, the predicted number of OOS per 100 Access Lines would be $0.741+3$ x 0.147 , or 1.182 OOS incidents per 100 Access Lines.

From a visual inspection of the scatter points on each of these graphs, it is also evident that the calculated relationship is essentially linear over the typical range of precipitation.

In certain cases, out-of-service incidents attributable to adverse weather conditions may be deemed beyond ILEC management's control, resulting in such events being "excluded" for purposes of GO 133-C/D service quality measurements and tracking. But while the precise dates
and extent of such conditions cannot be known in advance, this analysis confirms that the observed relationships extant between precipitation and OOS incidents is consistent both over time and across a broad spectrum of geographic areas. The fact that these events will arise at some point over time is thus well known and highly predictable, and certainly should be a major consideration in the engineering and construction of telecommunications distribution networks.

The strong relationship between rainfall and the rate of service outages provides compelling evidence that both ILECs' California distribution networks are not as robust as they need to be to account for local weather conditions over time. Weather or any other environmental factors that "caused" a particular out-of-service incident may (arguably) make that event "beyond management's immediate control," but the design and construction of the distribution network should certainly account for these types of weather conditions. And that is certainly well within the scope of "management's control" and responsibilities.

From a cost/benefit standpoint, there is an economic tradeoff between the up-front investment in constructing robust and weather-resistant network facilities and the ongoing amount of money that will need to be spent on maintenance for service restoration in the event of a weather-related outage. While the quantification of that tradeoff is outside of the scope of this study, the Commission may want to consider developing an engineering economic assessment of that relationship as a basis for establishing some minimum outage rates associated with adverse weather conditions. In that regard, the "public interest" in that economic trade-off likely differs considerably from that of the ILEC. The ILEC's decision process is limited to its own internalized costs and benefits - what ongoing maintenance savings will it realize for each additional amount spent on network construction. From the public's perspective, the trade-off must necessarily include broader economic and public safety considerations that fall outside of the economic trade-offs confronting the carriers..

Telephone service outages appear to be highly dependent upon weather conditions, specifically, the amount of precipitation in the area served.

The strong relationship between rainfall and the rate of service outages provides a strong indication that the ILEC distribution networks are not as robust as they need to be, and clearly lack the resiliency to withstand significant weather events.

Figure 13.2. REGION 1 SUPERIOR CALIFORNIA (AT\&T)



$$
\mathrm{R}^{2}=0.676 ; \text { T-Statistic }=15.695
$$

Figure 13.3. REGION 2 NORTH COAST (AT\&T)


$$
\begin{gathered}
y=0.985+0.093 x \\
R^{2}=0.490 ; \text { T-Statistic }=10.655
\end{gathered}
$$

Figure 13.4. REGION 3 SAN FRANCISCO BAY AREA (AT\&T)



$$
\begin{gathered}
y=0.741+0.147 x \\
R^{2}=0.756 ; T \text {-Statistic }=19.138
\end{gathered}
$$

Figure 13.5. REGION 4 NORTHERN SAN JOAQUIN VALLEY (AT\&T)



$$
\begin{gathered}
y=1.174+0.343 x \\
R^{2}=0.564 ; \text { T-Statistic }=12.364
\end{gathered}
$$

Figure 13.6. REGION 5 CENTRAL COAST (AT\&T)



$$
\begin{gathered}
y=0.811+0.151 x \\
R^{2}=0.592 ; \text { T-Statistic }=13.077
\end{gathered}
$$

Figure 13.7. REGION 6 SOUTHERN SAN JOAQUIN VALLEY (AT\&T)



$$
\begin{gathered}
\mathrm{y}=1.435+0.512 \mathrm{x} \\
\mathrm{R}^{2}=0.403 ; \text { T-Statistic }=8.922
\end{gathered}
$$

Figure 13.8. REGION 7 INLAND EMPIRE (AT\&T)



$$
\begin{gathered}
\mathrm{y}=1.142+0.300 \mathrm{x} \\
\mathrm{R}^{2}=0.378 ; \text { T-Statistic }=8.477
\end{gathered}
$$

Figure 13.9. REGION 8 LOS ANGELES (AT\&T)



$$
\begin{gathered}
y=0.954+0.206 x \\
R^{2}=0.520 ; T \text {-Statistic }=11.308
\end{gathered}
$$

Figure 13.10. REGION 9 ORANGE (AT\&T)



$$
\begin{gathered}
\mathrm{y}=0.814+0.140 \mathrm{x} \\
\mathrm{R}^{2}=0.507 ; \text { T-Statistic }=11.008
\end{gathered}
$$

Figure 13.11. REGION 10 SAN DIEGO-IMPERIAL (AT\&T)


$$
\begin{gathered}
y=0.877+0.191 \mathrm{x} \\
R^{2}=0.466 ; \text { T-Statistic }=10.154
\end{gathered}
$$

Figure 13.12. REGION 1 SUPERIOR CALIFORNIA (FTR)



$$
\begin{gathered}
y=0.819+0.133 x \\
R^{2}=0.465 ; T \text {-Statistic }=6.119
\end{gathered}
$$

Figure 13.13. REGION 2 NORTH COAST (FTR)


$$
\begin{gathered}
y=1.020+0.070 x \\
R^{2}=0.501 ; \text { T-Statistic }=6.567
\end{gathered}
$$

Figure 13.14. REGION 3 SAN FRANCISCO BAY AREA (FTR)



$$
\begin{gathered}
y=0.567+0.154 x \\
R^{2}=0.657 ; \text { T-Statistic }=9.080
\end{gathered}
$$

Figure 13.15. REGION 4 NORTHERN SAN JOAQUIN VALLEY (FTR)



$$
\begin{gathered}
y=0.637+0.075 x \\
R^{2}=0.209 ; \text { T-Statistic }=3.370
\end{gathered}
$$

Figure 13.16. REGION 5 CENTRAL COAST (FTR)



$$
\begin{gathered}
y=0.409+0.062 x \\
R^{2}=0.460 ; T \text {-Statistic }=6.056
\end{gathered}
$$

Figure 13.17. REGION 6 SOUTHERN SAN JOAQUIN VALLEY (FTR)



$$
\begin{gathered}
\mathrm{y}=0.932+0.475 \mathrm{x} \\
\mathrm{R}^{2}=0.551 ; \text { T-Statistic }=7.257
\end{gathered}
$$

Figure 13.18. REGION 7 INLAND EMPIRE (FTR)



$$
\begin{gathered}
y=0.586+0.185 x \\
R^{2}=0.622 ; \text { T-Statistic }=8.411
\end{gathered}
$$

Figure 13.19. REGION 8 LOS ANGELES (FTR)



$$
\begin{gathered}
y=0.426+0.124 x \\
R^{2}=0.750 ; T \text {-Statistic }=11.350
\end{gathered}
$$

Figure 13.20. REGION 9 ORANGE (FTR)



$$
\begin{gathered}
\mathrm{y}=0.488+0.123 \mathrm{x} \\
\mathrm{R}^{2}=0.588 ; \text { T-Statistic }=7.837
\end{gathered}
$$

Figure 13.21. REGION 10 SAN DIEGO-IMPERIAL (FTR)



$$
\begin{gathered}
\mathrm{y}=4.194+0.967 x \\
\mathrm{R}^{2}=0.082 ; \text { T-Statistic }=1.964
\end{gathered}
$$

## Effects of major wildfires on out-of-service incidents

The massive wildfires that have plagued California in recent years have prompted the Communications Division to include, within the scope of Phase 2 of the Network Examination, the following areas of additional inquiry:
(a) Was service quality worse overall in areas that are prone to wildfires and in areas that had major wildfires during the time period of 2010-2019?
(b) Has service quality improved or deteriorated in areas that suffered severe wildfire damage?
(c) Analysis of Investment and infrastructure technology in high risk fire areas (both rebuild and existing).

In order to analyze the relationship between major wildfire incidents and OOS incidents, we collected and analyzed wildfire statistics maintained by the California Department of Forestry and Fire Protection (CALFIRE). The CALFIRE data includes dates and locations of major wildfire incidents from 2013 to 2020, as well as the number of acres burned in each incident. Initially, we directed our examination to the same ten Census Regions that we had utilized in examining the effects of precipitation on service outages. To calculate the monthly number of wildfire incidents by Census Region, we identified the county (or counties) in which each major fire occurred, then aggregated the number of incidents in each county within each of the ten California Census Regions. We performed a similar aggregation for the monthly number of acres burned for each Census Region. Unlike the strong relationship identified in our precipitation analysis, the correlation between wildfire incidents or wildfire acres burned and OOS per 100 Access Lines proved to be extremely weak, as summarized in Tables 13.4 and 13.5 below.

We prepared two graphs for each Census Region for each of the two ILECs. Each of the graphs tracks the wildfire metric (incidents or acres burned) against the same service quality metric that we had used in the precipitation analysis above. Each set of graphs provides the wildfire metric vs. OOS per 100 Access Lines for Incidents and for Acres Burned. Figures 13.22 through 13.31 provide graphs for AT\&T California covering the period 2013 (the year that CALFIRE began compiling this data) through 2019. Figures 13.32 through 13.41 provide corresponding graphs for Frontier California for the 2016-2019 period.

		Table				
		\&T CAL BETWE F-SER 2013-2	ORNIA N WILDFIR CE INCID 19	VENTS   S		
Census Region	No. of Wire Centers	Total Incidents	Total   Acres Burned	Figures	Incidents $R^{2}$	Acres Burned $R^{2}$
1 Superior California	107	408	2,023,686	13.22	. 106	. 020
2 North Coast	58	144	1,321,172	13.23	. 071	. 002
3 San Francisco Bay Area	99	114	76,487	13.24	. 066	. 003
4 No. San Joaquin Valley	53	154	599,885	13.25	. 154	. 027
5 Central Coast	54	169	697,306	13.26	. 041	. 021
6 So. San Joaquin Valley	65	157	490,002	13.27	. 093	. 008
7 Inland Empire	13	183	172,143	13.28	. 065	. 010
8 Los Angeles County	69	40	188,407	13.29	. 047	. 008
9 Orange County	32	10	36,764	13.30	. 017	. 006
10 San Diego - Imperial	60	83	48,915	13.31	. 041	. 020
Source: CALFIRE data; ETI analysis of AT\&T California Out-of-Service incidents 2013-2019						

Table 13.5

## FRONTIER CALIFORNIA <br> RELATIONSHIP BETWEEN WILDFIRE EVENTS AND OUT-OF-SERVICE INCIDENTS <br> 2016-2019

Census Region	No. of Wire Centers	Total Incidents	Total Acres Burned	Figures	Inci-   dents $R^{2}$	Acres   Burned $R^{2}$
1 Superior California	4	408	2,023,686	13.32	. 197	. 069
2 North Coast	17	144	1,321,172	13.33	. 149	. 036
3 San Francisco Bay Area	4	114	76,487	13.34	. 141	. 020
4 No. San Joaquin Valley	13	154	599,885	13.35	. 086	. 018
5 Central Coast	20	169	697,306	13.36	. 150	. 089
6 So. San Joaquin Valley	38	157	490,002	13.37	. 188	. 104
7 Inland Empire	53	183	172,143	13.38	. 086	. 034
8 Los Angeles County	37	40	188,407	13.39	. 123	. 004
9 Orange County	4	10	36,764	13.40	. 069	. 006
10 San Diego - Imperial	2	83	48,915	13.41	. 000	. 074
Source: CALFIRE data; ETI analysis of Frontier California Out-of-Service incidents 2016-2019						

Figure 13.22. REGION 1 SUPERIOR CALIFORNIA (AT\&T)



Figure 13.23. REGION 2 NORTH COAST (AT\&T)



Figure 13.24. REGION 3 SAN FRANCISCO BAY AREA (AT\&T)



Figure 13.25. REGION 4 NORTHERN SAN JOAQUIN VALLEY (AT\&T)



Figure 13.26. REGION 5 CENTRAL COAST (AT\&T)



Figure 13.27. REGION 6 SOUTHERN SAN JOAQUIN VALLEY (AT\&T)



Figure 13.28. REGION 7 INLAND EMPIRE (AT\&T)



Figure 13.29. REGION 8 LOS ANGELES (AT\&T)



Figure 13.30. REGION 9 ORANGE (AT\&T)



Figure 13.31. REGION 10 SAN DIEGO-IMPERIAL (AT\&T)



Figure 13.32. REGION 1 SUPERIOR CALIFORNIA (FTR)



Figure 13.33. REGION 2 NORTH COAST (FTR)



Figure 13.34. REGION 3 SAN FRANCISCO BAY AREA (FTR)



Figure 13.35. REGION 4 NORTHERN SAN JOAQUIN VALLEY (FTR)



Figure 13.36. REGION 5 CENTRAL COAST (FTR)



Figure 13.37. REGION 6 SOUTHERN SAN JOAQUIN VALLEY (FTR)



Figure 13.38. REGION 7 INLAND EMPIRE (FTR)



Figure 13.39. REGION 8 LOS ANGELES (FTR)


Figure 13.40. REGION 9 ORANGE (FTR)



Figure 13.41. REGION 10 SAN DIEGO-IMPERIAL (FTR)



The overall absence of correlation can be observed by an inspection of these graphs. Notably, for a number of them, the peak wildfire incidents and OOS incidents appear to arise around six months apart. Wildfires appear to peak mainly during summer months, while OOS incidents appear to peak in the late fall and early winter. The high correlation between precipitation and OOS incidents suggests at least one plausible explanation for this: Wildfires occur mainly during hot summer months when rainfall is minimal, whereas OOS incidents arise during the periods of heaviest precipitation, which occurs during late fall and winter months. We considered running a regression model in which the wildfire data was lagged by six months, but to have any validity such a model would need to be premised upon some observable causal relationship that would, for example, account for service outages arising six months after a major wildfire. We do not believe that any such causal relationship exists, and thus did not pursue this approach.

While the $R^{2}$ s that were calculated at the Census Region level for wildfire incidents vs. OOS incidents are considerably lower than those associated with precipitation, we noted that at least some are sufficiently high (i.e., in the 0.10 to 0.18 range) - particularly in areas that have been heavily impacted by destructive wildfires - that some additional examination might be warranted. On the possibility that the geographic extent of entire Census Regions might overshadow the more localized impact of individual wildfire incidents, we prepared a similar set of regression analyses at the individual county level. We did this for each of the 51 counties in which AT\&T California provides service, and for each of the 26 counties where Frontier California operates. We surmised that, by studying the interactions between wildfires and service outages across smaller geographic units, it might be possible to identify correlations that would be masked at the full Census Region level. However, we did not observe any greater correlation at the individual county level than at the full Census Region level. Tables 13.6 and 13.7 provide the correlations between wildfire incidents or wildfire acres burned and OOS per 100 Access Lines at the individual county level for each of the two ILECs. Appendices 13-1 and 13-2 provide the results of these county-level studies for the AT\&T California and Frontier California service areas, respectively.

The lack of any increase in observable correlation when examined across the geographically smaller areas covered within individual counties serves to corroborate our initial finding that wildfires are not a specific source of individual telephone service outages. This is, of course, not to suggest that such events do not wreak extensive damage to the telecommunications infrastructure in the affected areas. But the destruction of infrastructure likely corresponds to the broader destruction of homes and businesses that result from wildfires, and from the available data it does not appear that the restoration of telephone service lags behind the broader reconstruction of the affected communities.

Table 13.6						
COUNTY-LEVEL RELATIONSHIPS BETWEEN WILDFIRE EVENTS AND OUT-OF-SERVICE INCIDENTS 2013-2019						
County	Census Region	No. of Wire Centers	Total Incidents	Total   Acres   Burned	Incidents $R^{2}$	Acres   Burned $R^{2}$
ALAMEDA	SAN FRANCISCO BAY AREA	19	27	5,597	0.042	0.020
AMADOR	NORTH SAN JOAQUIN VLY	4	11	5,911	0.046	0.009
BUTTE	SUPERIOR CALIFORNIA	9	59	189,061	0.094	0.015
CALAVERAS	NORTH SAN JOAQUIN VLY	8	21	2,565	0.022	0.010
COLUSA	SUPERIOR CALIFORNIA	1	6	459,316	0.021	0.020
CONTRA COSTA	SANFRANCISCOBAYAREA	20	27	6,884	0.009	0.009
EL DORADO	SUPERIOR CALIFORNIA	9	34	114,326	0.046	0.005
FRESNO	SOUTH SAN JOAQUIN VLY	21	53	214,075	0.083	0.001
GLENN	SUPERIOR CALIFORNIA	5	6	2,772	0.015	0.002
HUMBOLDT	NORTH COAST	13	22	17,987	0.037	0.007
IMPERIAL	SANDIEGO-IMPERIAL	9	0	0		
KERN	SOUTH SAN JOAQUIN VLY	21	56	118,540	0.053	0.008
KINGS	SOUTH SAN JOAQUIN VLY	5	5	54,377	0.006	0.000
LAKE	NORTH COAST	8	44	578,038	0.059	0.003
LOS ANGELES	LOS ANGELES	69	40	188,407	0.047	0.008
MADERA	NORTH SAN JOAQUIN VLY	3	32	30,072	0.066	0.006
MARIN	SAN FRANCISCO BAY AREA	12	5	304	0.008	0.006
MARIPOSA	NORTH SAN JOAQUIN VLY	4	25	205,665	0.011	0.004
MENDOCINO	NORTH COAST	11	21	40,346	0.052	0.000
MERCED	NORTH SAN JOAQUIN VLY	6	12	10,546	0.025	0.017
MONTEREY	CENTRAL COAST	20	42	150,596	0.033	0.008
NAPA	NORTH COAST	6	22	243,788	0.012	0.005
NEVADA	SUPERIOR CALIFORNIA	7	17	4,201	0.051	0.001
ORANGE	ORANGE	32	10	36,764	0.017	0.006
PLACER	SUPERIOR CALIFORNIA	12	12	30,979	0.028	0.009
PLUMAS	SUPERIOR CALIFORNIA	4	11	63,817	0.000	0.039
RIVERSIDE	INLAND EMPIRE	5	131	81,311	0.063	0.001
SACRAMENTO	SUPERIOR CALIFORNIA	19	9	1,712	0.030	0.010
SAN BENITO	CENTRAL COAST	4	18	4,022	0.006	0.002
SAN BERNARDINO	INLAND EMPIRE	8	52	90,832	0.057	0.014
SAN DIEGO	SANDIEGO-IMPERIAL	51	83	48,915	0.036	0.019
SAN FRANCISCO	SAN FRANCISCO BAY AREA	8	0	0		
SAN JOAQUIN	NORTH SAN JOAQUIN VLY	9	7	13,229	0.023	0.006
SAN LUIS OBISPO	CENTRAL COAST	13	60	91,149	0.010	0.003
SAN MATEO	SAN FRANCISCO BAY AREA	14	3	153	0.004	0.003
SANTA CLARA	SAN FRANCISCO BAY AREA	19	34	6,982	0.047	0.013
SANTA CRUZ	CENTRAL COAST	8	4	428	0.012	0.007
SHASTA	SUPERIOR CALIFORNIA	6	61	448,461	0.076	0.008


	COUNTY-LEVEL RELATI   AND OUT	3 (contin   CALIFOR   HIPS BET   SERVICE   13-2019	ed)   A   EEN W   NCIDEN	DFIRE		
County	Census Region	No. of Wire Centers	Total Incidents	Total   Acres   Burned	Incidents $R^{2}$	Acres   Burned $R^{2}$
SIERRA	SUPERIOR CALIFORNIA	4	2	915	0.254	0.161
SISKIYOU	SUPERIOR CALIFORNIA	8	50	285,123	0.018	0.002
SOLANO	SAN FRANCISCO BAY AREA	7	18	56,567	0.053	0.007
SONOMA	NORTH COAST	19	14	102,428	0.001	0.037
STANISLAUS	NORTH SAN JOAQUIN VLY	14	17	11,006	0.039	0.010
SUTTER	SUPERIOR CALIFORNIA	5	3	2,850	0.001	0.002
TEHAMA	SUPERIOR CALIFORNIA	7	49	51,889	0.035	0.018
TRINITY	NORTH COAST	1	17	338,048	0.028	0.015
TULARE	SOUTH SAN JOAQUIN VLY	18	33	78,191	0.035	0.009
TUOLUMNE	NORTH SAN JOAQUIN VLY	5	22	299,132	0.094	0.010
VENTURA	CENTRAL COAST	9	19	121,360	0.007	0.000
YOLO	SUPERIOR CALIFORNIA	5	12	108,681	0.024	0.008
YUBA	SUPERIOR CALIFORNIA	6	14	11,910	0.001	0.087
Source: CALFIRE data; ETI analysis of AT\&T California Out-of-Service incidents 2013-2019						


Table 13.7						
FRONTIER CALIFORNIA COUNTY-LEVEL RELATIONSHIPS BETWEEN WILDFIRE EVENTS AND OUT-OF-SERVICE INCIDENTS   2016-2019						
County	Census Region	No. of Wire Centers	Total Incidents	Total   Acres   Burned	Incidents $R^{2}$	Acres Burned $R^{2}$
FRESNO	SOUTH SAN JOAQUIN VLY	9	53	214,075	0.219	0.094
HUMBOLDT	NORTH COAST	6	22	17,987	0.000	0.020
IMPERIAL	SAN DIEGO-IMPERIAL	2				
INYO	SOUTH SAN JOAQUIN VLY	6	10	24,819	0.008	0.008
KERN	SOUTH SAN JOAQUIN VLY	16	56	118,540	0.106	0.039
KINGS	SOUTH SAN JOAQUIN VLY	1	5	54,377	0.003	0.012
LOS ANGELES	LOS ANGELES	37	40	188,407	0.123	0.004
MARIN	SAN FRANCISCO BAY AREA	1	5	304	0.042	0.014
MENDOCINO	NORTH COAST	4	21	40,346	0.139	0.002
MERCED	NORTH SAN JOAQUIN VLY	2	12	10,546	0.007	0.002
MONO	NORTH SAN JOAQUIN VLY	6	5	21,759	0.004	0.015
MONTEREY	CENTRAL COAST	2	42	150,596	0.003	0.017
ORANGE	ORANGE	4	10	36,764	0.069	0.006
PLACER	SUPERIOR CALIFORNIA	2	12	30,979	0.029	0.046
RIVERSIDE	INLAND EMPIRE	19	131	81,311	0.061	0.022
SAN BERNARDINO	INLAND EMPIRE	33	52	90,832	0.074	0.016
SAN JOAQUIN	NORTH SAN JOAQUIN VLY	4	7	13,229	0.004	0.008
SANTA BARBARA	CENTRAL COAST	9	26	329,751	0.071	0.039
SANTA CLARA	SAN FRANCISCO BAY AREA	3	34	6,982	0.108	0.051
SONOMA	NORTH COAST	4	14	102,428	0.007	0.007
STANISLAUS	NORTH SAN JOAQUIN VLY	1	17	11,006	0.040	0.026
SUTTER	SUPERIOR CALIFORNIA	1	3	2,850	0.029	0.013
TRINITY	NORTH COAST	3	17	338,048	0.028	0.039
TULARE	SOUTH SAN JOAQUIN VLY	7	33	78,191	0.036	0.004
VENTURA	CENTRAL COAST	9	19	121,360	0.017	0.001
YOLO	SUPERIOR CALIFORNIA	1	12	108,681	0.084	0.006
Source: CALFIRE data; ETI analysis of Frontier California Out-of-Service incidents 2016-2019						

## Investment and infrastructure in high risk fire areas

We examined relationships between total acres burned over the 2013-2020 period based upon CALFIRE data and infrastructure investments made by each of the two ILECs. By hypothesis, if ILECs were responding to areas of high wildfire risk with large scale infrastructure investment, we would expect to see some relationship between the extent of wildfire activity and the level of investment being made in a given area. Using county-level wildfire and Gross Plant

Additions investment data，we compared Total Acres Burned with two ILEC investment indicia －TotalGross Plant additions and Gross Plant Additions per Access Line．Because infrastructure reliability and investment would be expected to lag behind the actual wildfire damage，we utilized 2018－2019 Gross Plant Additions data for this analysis．

Tables 13.8 and 13.9 summarize this data for AT\＆T California and Frontier California， respectively．Because we utilized county－level data for this analysis，we would not expect a perfect match between the wildfire and investment data for each ILEC because，with very few exceptions，wildfires do not affect an entire county and ILECs do not generally serve an entire county．Additionally，because California counties vary in population by a factor of around 1000－ to－ 1 and population has，if anything，an inverse relationship with the total number of acres burned，we utilized two alternate indicia of investment activity：
－Total 2018－2019 Gross Plant Additions for each county
－County－level Gross Plant Additions per Switched Access Line（as of January 2019）for each county

All else equal，ILEC investment in any given area is driven largely by the number of customers in that area，so we would expect larger investments to be made in the more populous counties． To control for this，we also examined unit gross plant investment per access line in service，using the January 2019 midpoint of the 2018－2019 Phase 2 study period．We also calculated the percentage of total wildfire acres burned for each of the counties served by each ILEC，as well as the percentage of that ILEC＇s total Gross Plant Additions for each of the counties it serves．A visual examination of the data in Tables 13.8 and 13.9 suggests little correlation between Total Acres Burned and either Total Gross Plant Additions or Gross Plant Additions per Access Line．

In order to examine the extent of any such correlation quantitatively，we have calculated a statistic known as the Spearman Rank Correlation ${ }^{94}$ both as between Total Acres Burned and Total Gross Plant Additions，as well as between Total Acres Burned and Gross Plant Additions per Access Line．Both Acres and Burned and Gross Plant Additions vary by orders－of－ magnitude on a county－by county basis，diminishing the usefulness of traditional linear correlation analysis．Rank correlation avoids this problem．It is calculated by first ranking the individual observations for each of the two variables to be examined，in this instance，from highest（assigned the rank of＂ 1 ＂）to lowest（assigned the rank of 51 （for AT\＆T）or 28 （for Frontier）．These rankings are also shown on Tables 13.8 and 13．9．Table 13.10 summarizes the two Rank Correlation calculations for each of the two ILECs：

[^33]| Table 13.8AT\&T CALIFORNIAINFRASTRUCTURE INVESTMENT IN HIGH-RISK WILDFIRE AREAS(sorted by Total Acres Burned - highest to lowest) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Table 13.8: INFRASTRUCTURE INVESTMENT IN HIGH-RISK WILDFIRE AREAS (continued) |  |  |  |  |  |  |  |  |  |  |  |
| County | Wildfire Incidents 2013-2020 | Total Acres Burned | Pct of Tot Acres Burned | No. of Wire Centers | $\begin{gathered} \text { Access Lines } \\ \text { Jan } 2019 \\ \hline \end{gathered}$ | 2018-29 Gross <br> Plant Additions | $\begin{gathered} \text { Pct of total } \\ 2018-29 \text { GPA } \end{gathered}$ | $\begin{aligned} & \text { GPA per ALs- } \\ & \text { Jan } 2019 \end{aligned}$ | $\begin{gathered} \text { Acres Burned } \\ \text { Rank } \\ \hline \end{gathered}$ | $\begin{gathered} \text { GPA } \\ \text { Investment } \\ \text { rank } \end{gathered}$ | $\begin{aligned} & \text { GPA per AL } \\ & \text { Rank } \end{aligned}$ |
| LAKE | 44 | 578,038 | 11.49\% | 8 | 7,679 | 5,611,885 | 0.28\% | 731 | 1 | 36 | 37 |
| COLUSA | 6 | 459,316 | 9.13\% | 1 | 138 | 35,973 | 0.00\% | 261 | 2 | 51 | 50 |
| SHASTA | 61 | 448,461 | 8.92\% | 6 | 11,840 | 34,794,138 | 1.75\% | 2,939 | 3 | 15 | 2 |
| TRINITY | 17 | 338,048 | 6.72\% | 1 | 508 | 514,098 | 0.03\% | 1,012 | 4 | 49 | 22 |
| TUOLUMNE | 22 | 299,132 | 5.95\% | 5 | 10,048 | 5,069,941 | 0.25\% | 505 | 5 | 38 | 47 |
| SISKIYOU | 50 | 285,123 | 5.67\% | 8 | 4,673 | 4,323,702 | 0.22\% | 925 | 6 | 40 | 29 |
| NAPA | 22 | 243,788 | 4.85\% | 6 | 12,701 | 12,043,604 | 0.61\% | 948 | 7 | 28 | 27 |
| FRESNO | 53 | 214,075 | 4.26\% | 21 | 42,153 | 34,258,390 | 1.72\% | 813 | 8 | 16 | 34 |
| MARIPOSA | 25 | 205,665 | 4.09\% | 4 | 1,758 | 3,167,291 | 0.16\% | 1,802 | 9 | 46 | 4 |
| BUTTE | 59 | 189,061 | 3.76\% | 9 | 18,842 | 37,990,193 | 1.91\% | 2,016 | 10 | 14 | 3 |
| LOS ANGELES | 40 | 188,407 | 3.75\% | 69 | 451,446 | 391,828,147 | 19.70\% | 868 | 11 | 1 | 31 |
| MONTEREY | 42 | 150,596 | 2.99\% | 20 | 30,843 | 26,252,051 | 1.32\% | 851 | 12 | 21 | 33 |
| VENTURA | 19 | 121,360 | 2.41\% | 9 | 22,576 | 23,449,202 | 1.18\% | 1,039 | 13 | 22 | 19 |
| KERN | 56 | 118,540 | 2.36\% | 21 | 34,148 | 42,158,617 | 2.12\% | 1,235 | 14 | 12 | 10 |
| EL DORADO | 34 | 114,326 | 2.27\% | 9 | 18,933 | 10,816,698 | 0.54\% | 571 | 15 | 30 | 44 |
| YOLO | 12 | 108,681 | 2.16\% | 5 | 9,662 | 10,740,656 | 0.54\% | 1,112 | 16 | 31 | 15 |
| SONOMA | 14 | 102,428 | 2.04\% | 19 | 38,850 | 43,900,406 | 2.21\% | 1,130 | 17 | 11 | 13 |
| SAN LUIS OBISPO | 60 | 91,149 | 1.81\% | 13 | 22,565 | 21,369,125 | 1.07\% | 947 | 18 | 24 | 28 |
| SAN BERNARDINO | 52 | 90,832 | 1.81\% | 8 | 15,561 | 27,359,437 | 1.38\% | 1,758 | 19 | 20 | 5 |
| RIVERSIDE | 131 | 81,311 | 1.62\% | 5 | 29,666 | 40,269,557 | 2.02\% | 1,357 | 20 | 13 | 7 |
| TULARE | 33 | 78,191 | 1.55\% | 18 | 26,281 | 27,533,006 | 1.38\% | 1,048 | 21 | 19 | 18 |
| PLUMAS | 11 | 63,817 | 1.27\% | 4 | 4,267 | 698,836 | 0.04\% | 164 | 22 | 48 | 51 |
| SOLANO | 18 | 56,567 | 1.12\% | 7 | 21,545 | 18,635,144 | 0.94\% | 865 | 23 | 26 | 32 |
| KINGS | 5 | 54,377 | 1.08\% | 5 | 5,554 | 5,687,790 | 0.29\% | 1,024 | 24 | 35 | 21 |
| TEHAMA | 49 | 51,889 | 1.03\% | 7 | 7,769 | 4,197,767 | 0.21\% | 540 | 25 | 41 | 45 |
| SAN DIEGO | 83 | 48,915 | 0.97\% | 51 | 145,740 | 159,693,753 | 8.03\% | 1,096 | 26 | 3 | 16 |
| MENDOCINO | 21 | 40,346 | 0.80\% | 11 | 15,026 | 7,432,464 | 0.37\% | 495 | 27 | 33 | 49 |
| ORANGE | 10 | 36,764 | 0.73\% | 32 | 144,937 | 143,966,352 | 7.24\% | 993 | 28 | 5 | 25 |
| PLACER | 12 | 30,979 | 0.62\% | 12 | 19,591 | 20,132,322 | 1.01\% | 1,028 | 29 | 25 | 20 |
| MADERA | 32 | 30,072 | 0.60\% | 3 | 5,319 | 5,241,661 | 0.26\% | 985 | 30 | 37 | 26 |
| HUMBOLDT | 22 | 17,987 | 0.36\% | 13 | 10,594 | 10,648,626 | 0.54\% | 1,005 | 31 | 32 | 24 |
| SAN JOAQUIN | 7 | 13,229 | 0.26\% | 9 | 29,199 | 29,508,463 | 1.48\% | 1,011 | 32 | 17 | 23 |
| YUBA | 14 | 11,910 | 0.24\% | 6 | 5,819 | 3,617,512 | 0.18\% | 622 | 33 | 44 | 40 |
| STANISLAUS | 17 | 11,006 | 0.22\% | 14 | 28,242 | 22,623,727 | 1.14\% | 801 | 34 | 23 | 36 |
| MERCED | 12 | 10,546 | 0.21\% | 6 | 10,264 | 17,651,102 | 0.89\% | 1,720 | 35 | 27 | 6 |
| SANTA CLARA | 34 | 6,982 | 0.14\% | 19 | 121,579 | 158,426,693 | 7.97\% | 1,303 | 36 | 4 | 8 |
| CONTRA COSTA | 27 | 6,884 | 0.14\% | 20 | 67,041 | 71,948,594 | 3.62\% | 1,073 | 37 | 9 | 17 |
| AMADOR | 11 | 5,911 | 0.12\% | 4 | 4,550 | 3,653,909 | 0.18\% | 803 | 38 | 42 | 35 |
| ALAMEDA | 27 | 5,597 | 0.11\% | 19 | 118,102 | 107,718,143 | 5.42\% | 912 | 39 | 6 | 30 |


Table 13.8: INFRASTRUCTURE INVESTMENT IN HIGH-RISK WILDFIRE AREAS (continued)											
County	Wildfire Incidents 2013-2020	Total Acres Burned	Pct of Tot Acres Burned	No. of Wire Centers	$\begin{gathered} \text { Access Lines } \\ \text { Jan } 2019 \end{gathered}$	2018-29 Gross Plant Additions	$\begin{gathered} \text { Pct of total } \\ \text { 2018-29 GPA } \end{gathered}$	$\begin{aligned} & \text { GPA per ALs- } \\ & \text { Jan } 2019 \end{aligned}$	Acres Burned Rank	GPA Investment rank	GPA per AL Rank
NEVADA	17	4,201	0.08\%	7	18,967	10,987,185	0.55\%	579	40	29	42
SAN BENITO	18	4,022	0.08\%	4	3,967	4,833,940	0.24\%	1,219	41	39	11
SUTTER	3	2,850	0.06\%	5	6,042	3,635,319	0.18\%	602	42	43	41
GLENN	6	2,772	0.06\%	5	2,743	1,588,480	0.08\%	579	43	47	43
CALAVERAS	21	2,565	0.05\%	8	6,920	3,578,075	0.18\%	517	44	45	46
SACRAMENTO	9	1,712	0.03\%	19	71,854	84,192,259	4.23\%	1,172	45	7	12
SIERRA	2	915	0.02\%	4	878	434,367	0.02\%	495	46	50	48
SANTA CRUZ	4	428	0.01\%	8	25,695	28,861,224	1.45\%	1,123	47	18	14
MARIN	5	304	0.01\%	12	25,042	174,673,021	8.78\%	6,975	48	2	1
SAN MATEO	3	153	0.00\%	14	64,370	80,943,675	4.07\%	1,257	49	8	9
IMPERIAL				9	8,996	6,269,993	0.32\%	697	50	34	38
SAN FRANCISCO				8	98,235	61,524,552	3.09\%	626	51	10	39


Table 13.9   FRONTIER CALIFORNIA   INFRASTRUCTURE INVESTMENT IN HIGH-RISK WILDFIRE AREAS (sorted by Total Acres Burned - highest to lowest)											
County	Wildfire Incidents 2013-2020	Burned   Total Acres Burned	Pct of Tot   Acres   Burned	No. of Wire Centers	$\begin{gathered} \text { Access Lines } \\ \text { Jan } 2019 \end{gathered}$	2018-29 Gross Plant Additions	$\begin{gathered} \text { Pct of total } \\ \text { 2018-29 GPA } \end{gathered}$	$\begin{aligned} & \text { GPA per ALs- } \\ & \text { Jan } 2019 \end{aligned}$	$\begin{aligned} & \text { Acres Burned } \\ & \text { Rank } \end{aligned}$		GPA per AL Rank
TRINITY	17	338,048		3	2,325	3,419,237	0.63\%	1,470	1	12	4
SANTA BARBARA	26	329,751		13	38,859	20,939,279	3.89\%	539	2	4	21
FRESNO	53	214,075		12	7,007	9,515,871	1.77\%	1,358	3	7	5
LOS ANGELES	40	188,407		49	259,444	206,868,260	38.39\%	797	4	1	13
MONTEREY	42	150,596		2	518	1,924,831	0.36\%	3,718	5	17	1
VENTURA	19	121,360		9	40,429	10,268,917	1.91\%	254	6	6	26
KERN	56	118,540		20	10,656	7,183,092	1.33\%	674	7	9	18
YOLO	12	108,681		2	134	92,114	0.02\%	687	8	25	17
SONOMA	14	102,428		4	1,648	1,148,564	0.21\%	697	9	19	16
SAN BERNARDINO	52	90,832		44	109,474	124,884,097	23.17\%	1,141	10	2	8
RIVERSIDE	131	81,311		36	107,773	99,286,754	18.42\%	921	11	3	10
TULARE	33	78,191		8	4,204	3,414,297	0.63\%	812	12	13	11
KINGS	5	54,377		1	760	418,516	0.08\%	551	13	23	20
MENDOCINO	21	40,346		4	1,302	1,488,284	0.28\%	1,143	14	18	7
ORANGE	10	36,764		6	40,652	19,654,531	3.65\%	483	15	5	23
PLACER	12	30,979		2	1,102	738,427	0.14\%	670	16	21	19
INYO	10	24,819		5	2,768	2,215,386	0.41\%	800	17	16	12
MONO	5	21,759		6	3,126	2,260,006	0.42\%	723	18	15	15
HUMBOLDT	22	17,987		5	2,476	6,533,275	1.21\%	2,638	19	10	3
SAN JOAQUIN	7	13,229		5	7,891	2,392,896	0.44\%	303	20	14	25
STANISLAUS	17	11,006		1	148	110,340	0.02\%	744	21	24	14
MERCED	12	10,546		2	914	990,161	0.18\%	1,084	22	20	9
SANTA CLARA	34	6,982		3	17,108	8,524,949	1.58\%	498	23	8	22
SUTTER	3	2,850		1	74	26,990	0.01\%	365	24	26	24
MARIN	5	304		1	3,335	3,926,776	0.73\%	1,177	25	11	6
IMPERIAL	0	-		2	216	654,919	0.12\%	3,038	26	22	2
MODOC	0	-		1	-	2,479	0.00\%	-	27	27	27
SACRAMENTO	0	-		1	-	-	0.00\%	-	28	28	28
TOTALS	658	2,194,168	0.00\%	248	664,343	538,883,246	100.00\%				

Table 13.10


#### Abstract

RANK CORRELATIONS BETWEEN TOTAL WILDFIRE ACRES BURNED (2013-2020) AND ILEC GROSS PLANT INVESTMENTS (2018-2019)


Rank Correlation between	AT\&T   California	Frontier   California
Total Acres Burned and Gross Plant Additions	-0.113846154	0.551724138
Total Acres Burned and Gross Plant Additions per Access Line	0.045248869	0.241926656

Notably, the results of these calculations are decidedly different for AT\&T and Frontier. In the case of AT\&T, the Rank Correlation between Total Acres Burned and Total Gross Plant Additions is negative 0.1138 , suggesting an inverse relationship between these two variables. When we look at investment on a per-access line basis, the correlation is slightly positive, but quite low at only 0.0452 . The clear conclusion here is that, for AT\&T, there is no obvious relationship between its investment priorities and areas of high fire risk.

For Frontier, the rank correlation between Total Acres Burned and Total Gross Plant Additions is a positive 0.5517 , suggesting a relatively strong positive correlation. Even when viewed on a per access line basis, we still see a rank correlation of 0.2419 . Of course, these calculations do not reveal any causal link between Frontier's investment activities and the incidence of wildfires, although the particularly high rank correlatiion between Acres Burned and Total Gross Plant Additons, which does not control for the volume of customers, could be interpreted as inferring at least some causal link in this case.

## Conclusion

Our analysis of the effect of exogenous environmental conditions upon service quality of legacy circuit-switched telephone service has identified a strong correlation between precipitation and out-of-service incidents, but no discernable relationship between wildfires and service quality. The massive wildfires that have become all too common in California certainly destroy infrastructure as well as homes and other buildings on a grand scale, and undoubtedly have an impact upon the ability of the ILEC to furnish service in the affected area. However, if a home is destroyed along with the owner's telephone service, dealing with that type of service outage is likely a fairly low priority for the property owner, and as such does not result in a simply out-of-service trouble ticket on an individual customer basis. Frontier's plant investments, which in recent years have focused heavily upon outside plant, do appear to have some positive relationship with the extent of wildfires in a given county, but our analysis does not firmly establish a direct causal link between fires and investment overall.

## Appendix 13-1

## AT\&T California

## County-level Regression Analyses Wildfires vs. Telephone Service Outages

COUNTY-REGION ALAMEDA - SAN FRANCISCO BAY AREA (AT\&T)



## COUNTY-REGION AMADOR - NORTHERN SAN JOAQUIN VALLEY (AT\&T)




## COUNTY-REGION BUTTE - SUPERIOR CALIFORNIA (AT\&T)




COUNTY-REGION CALAVERAS - NORTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION COLUSA - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION CONTRA COSTA - SAN FRANCISCO BAY AREA (AT\&T)


COUNTY-REGION EL DORADO - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION FRESNO - SOUTHERN SAN JOAQUIN VALLEY (AT\&T)



## COUNTY-REGION GLENN - SUPERIOR CALIFORNIA (AT\&T)




COUNTY-REGION HUMBOLDT - NORTH COAST (AT\&T)


COUNTY-REGION IMPERIAL - SAN DIEGO-IMPERIAL (AT\&T)



COUNTY-REGION KERN - SOUTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION KINGS - SOUTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION LAKE - NORTH COAST (AT\&T)



COUNTY-REGION LOS ANGELES - LOS ANGELES (AT\&T)



COUNTY-REGION MADERA - NORTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION MARIN - SAN FRANCISCO BAY AREA (AT\&T)



COUNTY-REGION MARIPOSA - NORTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION MENDOCINO - NORTH COAST (AT\&T)



COUNTY-REGION MERCED - NORTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION MONTEREY - CENTRAL COAST (AT\&T)



COUNTY-REGION NAPA - NORTH COAST (AT\&T)



COUNTY-REGION NEVADA - SUPERIOR CALIFORNIA (AT\&T)





COUNTY-REGION PLACER - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION PLUMAS - SUPERIOR CALIFORNIA (AT\&T)



## COUNTY-REGION RIVERSIDE - INLAND EMPIRE (AT\&T)




COUNTY-REGION SACRAMENTO - SUPERIOR CALIFORNIA (AT\&T)


```
COUNTY-REGION SAN BENITO - CENTRAL COAST (AT&T)
```




COUNTY-REGION SAN BERNARDINO-INLAND EMPIRE (AT\&T)



## COUNTY-REGION SAN DIEGO - SAN DIEGO-IMPERIAL (AT\&T)




COUNTY-REGION SAN FRANCISCO - SAN FRANCISCO BAY AREA (AT\&T)



COUNTY-REGION SAN JOAQUIN - NORTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION SAN LUIS OBISPO - CENTRAL COAST (AT\&T)



COUNTY-REGION SAN MATEO - SAN FRANCISCO BAY AREA (AT\&T)



COUNTY-REGION SANTA CLARA - SAN FRANCISCO BAY AREA (AT\&T)



COUNTY-REGION SANTA CRUZ - CENTRAL COAST (AT\&T)



## COUNTY-REGION SHASTA - SUPERIOR CALIFORNIA (AT\&T)




COUNTY-REGION SIERRA - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION SISKIYOU - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION SOLANO - SAN FRANCISCO BAY AREA (AT\&T)



COUNTY-REGION SONOMA - NORTH COAST (AT\&T)


COUNTY-REGION STANISLAUS - NORTHERN SAN JOAQUIN VALLEY (AT\&T)



COUNTY-REGION SUTTER - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION TEHAMA - SUPERIOR CALIFORNIA (AT\&T)



COUNTY-REGION TRINITY - NORTH COAST (AT\&T)



## COUNTY-REGION TULARE - SOUTHERN SAN JOAQUIN VALLEY (AT\&T)




## COUNTY-REGION TUOLUMNE - NORTHERN SAN JOAQUIN VALLEY (AT\&T)




## COUNTY-REGION VENTURA - CENTRAL COAST (AT\&T)




## COUNTY-REGION YOLO - SUPERIOR CALIFORNIA (AT\&T)




COUNTY-REGION YUBA - SUPERIOR CALIFORNIA (AT\&T)



## Appendix 13-2

## Frontier California

## County-level Regression Analyses Wildfires vs. Telephone Service Outages

,
ECONOMICS AND

COUNTY-REGION FRESNO - SOUTHERN SAN JOAQUIN VALLEY (FTR)



COUNTY-REGION HUMBOLDT - NORTH COAST (FTR)



COUNTY-REGION IMPERIAL - SAN DIEGO-IMPERIAL (FTR)



COUNTY-REGION INYO - SOUTHERN SAN JOAQUIN VALLEY (FTR)



COUNTY-REGION KERN - SOUTHERN SAN JOAQUIN VALLEY (FTR)



COUNTY-REGION KINGS - SOUTHERN SAN JOAQUIN VALLEY (FTR)



COUNTY-REGION LOS ANGELES - LOS ANGELES (FTR)



## COUNTY-REGION MARIN - SAN FRANCISCO BAY AREA (FTR)




COUNTY-REGION MENDOCINO - NORTH COAST (FTR)



## COUNTY-REGION MERCED - NORTHERN SAN JOAQUIN VALLEY (FTR)




COUNTY-REGION MONO - NORTHERN SAN JOAQUIN VALLEY (FTR)



COUNTY-REGION MONTEREY - CENTRAL COAST (FTR)





COUNTY-REGION PLACER - SUPERIOR CALIFORNIA (FTR)





COUNTY-REGION SAN BERNARDINO - INLAND EMPIRE (FTR)



## COUNTY-REGION SAN JOAQUIN - NORTHERN SAN JOAQUIN VALLEY (FTR)




COUNTY-REGION SANTA BARBARA - CENTRAL COAST (FTR)



COUNTY-REGION SANTA CLARA - SAN FRANCISCO BAY AREA (FTR)



COUNTY-REGION SONOMA - NORTH COAST (FTR)



## COUNTY-REGION STANISLAUS - NORTHERN SAN JOAQUIN VALLEY (FTR)




COUNTY-REGION SUTTER - SUPERIOR CALIFORNIA (FTR)



COUNTY-REGION TRINITY - NORTH COAST (FTR)



COUNTY-REGION TULARE - SOUTHERN SAN JOAQUIN VALLEY (FTR)



COUNTY-REGION VENTURA - CENTRAL COAST (FTR)



COUNTY-REGION YOLO-SUPERIOR CALIFORNIA (FTR)



## 14 ILEC RESPONSES TO SERVICE OUTAGES: VoIP SERVICES

## Key findings addressed in this Chapter

- When an ILEC legacy circuit-switched POTS customer orders some form of broadband access from the ILEC, the carrier will generally migrate the customer's voice telephone service to a VoIP offering that is delivered, together with the customer's broadband Internet access, via the digital service.
- ILEC VoIP services are provided out of the same serving wire center that had been used for legacy circuit-switched services, but the VoIP switch itself can be located anywhere on the Internet. A service interruption or outage can arise in the local distribution infrastructure or anywhere beyond that point on the ILEC's IP network.
- Most AT\&T California VoIP services are provided using DSL technology over a hybrid Fiber-to-the-Node ("FTTN") / copper distribution architecture. However, AT\&T's deployment of Fiber-to-the-Premises ("FTTP") has been increasing; by the end of 2019, some of all AT\&T California VoIP customers were being served via FTTP.
- From 2012 through 2016, the percentage of AT\&T California VoIP access lines that had experienced out-of-service conditions in any given month was decreasing steadily, but those gains were reversed after 2016.
- The average duration of all trouble and out-of-service conditions was also shrinking up until 2016, but both metrics saw large upward spikes, with outage durations increase from less than 30 hours prior to 2017 to around 50 hours from 2017 onward.
- Some $58.4 \%$ of the 3.3 -million AT\&T California VoIP trouble reports created during the 2012-2019 period involved distribution plant issues.
- In wire centers where both VoIP and POTS are offered and where trouble report data is available for both services, the relative incidence of VoIP service outages was $38.7 \%$ greater than it was for POTS over the full Phase $1 / 2$ study periods.
- Frontier suffered large losses both of POTS and VoIP access lines since assuming control of the company on April 1, 2016 with POTS losses slightly higher, suggesting that the availability of FTTP-based FiOS has done little to help Frontier maintain its customer base overall.
- As of the end of December 2019, Frontier was serving only $\square$ residential VoIP subscribers, just under $50 \%$ of the VoIP lines in service as of the takeover date. In comparison, Frontier had experienced a far greater drop-off in legacy circuit-switched access lines over that same period
- Out of the 44,095 out-of-service reports provided for the period from April 2016 through December 2019, only 25,089 , or about $56.9 \%$, appear to be the result of Frontier plant or equipment issues or employee actions.


## ILEC RESPONSES TO SERVICE OUTAGES: VoIP SERVICES

## TABLE OF CONTENTS

Introduction ..... 649
Regulatory status of VoIP in California ..... **
Principal forms of digital services that support VoIP telephony ..... **
ILEC VoIP service architecture ..... **
VoIP service quality metrics: AT\&T California ..... **
Individual wire center VoIP service quality performance ..... **
VoIP service quality metrics: Frontier California ..... **
Conclusion ..... **

## Tables and Figures

Table 14.1: AT\&T California VoIP subscriptions and technologies, 2012-2019
Table 14.2: AT\&T California VoIP subscriptions and trouble reports, 2012-2019
Table 14.3: AT\&T California Average Duration of VoIP Trouble Conditions, 2012-2019

Table 14.4: AT\&T California Principal VoIP Trouble Report Cause Categories and Subcategories, 2012-2019

Table 14.5: AT\&T California Annual VoIP Trouble Report Incidents by Major Cause Categories 2012-2019

Table 14.6: AT\&T California Monthly VoIP Trouble Reports per Hundred Access Lines (TRPH) by Major Cause Category, 2012-2019

Table 14.7: AT\&T California Comparison of Average Monthly Out-of-Service Trouble Reports per Hundred Access Lines (TRPH) Legacy POTS vs. VoIP Services, 2018-2019

Table 14.8: AT\&T California VoIP Access Lines in Service by Wire Center, Average per Month, 2014-2019

Table 14.9: AT\&T California VoIP Trouble Reports per Hundred Access Lines (TRPH) by Wire Center Average per Month, 2015-2019

Table 14.10: AT\&T California VoIP Out-of-service Reports per Hundred Access Lines (TRPH) by Wire Center Average per Month 2015-2019

Table 14.11 Frontier California POTS and VoIP Lines in Service, 2016-2019
Table 14.12: Frontier California VoIP Lines in Service and VoIP Trouble Reports 2016-2019

Table 14.13: Frontier California VoIP Service Outage Cause Indications
Table 14.14: Frontier California Principal Categories of VoIP Out-of-service Trouble Reports

Table 14.15: Frontier California VoIP Lines in Service and Out-of-service Trouble Reports Associated with Frontier Plant and Equipment Failures, 2016-2019

Figure 14.1: Principal components of an ILEC local distribution network.
**

ECONOMICS AND

## Introduction

For more than a decade, traditional circuit-switched voice telephone services have been in the process of being replaced by Voice over Internet Protocol ("VoIP") technology. VoIP requires the deployment of digital services to the customer's premises with sufficient bandwidth to accommodate both voice telephony as well as the various other digital (typically Internetbased) services that are used by the customer. Twisted-pair copper "loops" that have traditionally been provided to almost all residential premises and to most business locations can support digital end-to-end services, but generally cannot support the bandwidth requirements of typical residential and business customers for the full suite of voice and broadband Internet applications, particularly streaming video. Substantially greater bandwidths can be achieved through the use of either of three other technologies - fiber-to-the-premises ("FTTP"), fiber-to-the-node ("FTTN"), or hybrid fiber/coax ("HFC"). FTTP and FTTN are the preferred approach to high bandwidth services for ILECs, whereas HFC is used primarily by cable TV operators. With both FTTN and HFC, fiber is extended to a "node" located relatively close to the customer, but not all the way to the customer's premises. The potential bandwidth achievable via twisted pair copper or coaxial cable is inversely related to the physical length of that segment; by extending fiber to the neighborhood node, the length of the copper or coax segment can be minimized, thereby enabling greater bandwidth to be delivered to the customer's premises. Verizon (now Frontier) has focused upon an FTTP strategy via the FiOS brand; AT\&T has some FTTP, but its predominant approach has been toward FTTN.

When an ILEC legacy circuit-switched POTS customer orders some form of broadband access from the ILEC, the carrier will generally migrate the customer's voice telephone service to a VoIP offering that is delivered, together with the customer's broadband Internet access, via the digital service. AT\&T California does not offer VoIP services to customers who do not also take broadband Internet access and/or video from the ILEC; Frontier had a similar policy up until July 2019, when it began offering VoIP service on a stand-alone basis. ${ }^{95}$


The term "interconnected VoIP" refers to VoIP telephone service that is capable of initiating and/or receiving telephone calls over the Public Switched Telephone Network ("PSTN"). VoIP service can be furnished by a carrier, such as an ILEC or a cable television MSO, or as a socalled "over-the-top" Internet application by providers such as Vonage, MagicJack and others. A form of interconnected VoIP known as "Session Initiated Protocol" ("SIP") is used by

[^34]businesses and other nonresidential customers where multiple voice paths (what would have been called "PBX trunks" in a circuit-switched world) are needed. When VoIP service is provided by an ILEC or a cable TV company, it is typically configured to operate over a dedicated subset, or "channel," of the total Internet Protocol ("IP") bandwidth that is being provided to the customer. "Over-the-top" services, which are purchased separately by the customer, typically share the same total available bandwidth with any other Internet activities that the customer is using. The customer's Internet router can, however, be configured to afford priority to VoIP or other specific applications, if the customer has the technical knowledge to make the necessary "Quality of Service" ("QoS") router settings. These settings enable over-the-top VoIP services to achieve results using shared Internet bandwidth that are roughly equivalent to those that are available through the use of "dedicated" VoIP bandwidth as provider by the carrier. Larger businesses that utilize SIP trunking obtained from an over-the-top provider may obtain dedicated IP bandwidth for this purpose that is separate and apart from their other IP applications.

## Regulatory status of VoIP in California

In 2012, the California legislature adopted a new $\S 710$ of the California Public Utilities Code whose effect was to remove most aspects of any VoIP service from the CPUC's regulatory jurisdiction. ${ }^{96} \S 710$ had included a "sunset" provision that became operative as of January 1, 2020; CD has advised us that $\$ 710$ is no longer in effect and that the CPUC currently has resumed its jurisdiction over VoIP services. That notwithstanding, the ILECs continue to maintain that VoIP remains deregulated and that the Commission does not have jurisdiction with respect to this service. For example, in its response to a CD Data Request for certain VoIPrelated data, Frontier asserts that:

Frontier notes that many of these questions seek irrelevant information that is unrelated to Frontier's infrastructure, facilities and service quality and therefore, exceed the scope of the network examination authorized by Commission Decisions (D) 13-02-023 and D.15-08-041 and the scope of Commission General Order (G.O.) 133-D. Frontier also notes that several of the data requests seek granular information regarding Frontier's unregulated VoIP services. Insofar as these questions are intended to bring VoIP within the Commission's jurisdiction, it is contrary to federal law. See, e.g., Vonage Holdings Corporation Petition for Declaratory Ruling Concerning and Order of the Minnesota Public Utilities Commission, WC Docket No. 03• ]211, Memorandum Opinion and Order, FCC 04-267 (rel. Nov. 12, 2004) ब $1 \& \mathrm{n} .78$ (confirming that interconnected VoIP is not subject to traditional telephone company regulations); Minnesota PUC $v$. FCC, 483 F.3d 570 (8th Cir. 2007) (affirming Vonage order); see also Charter Advanced Services, LLC v. Lange, 903 F.3d 715, 719 (8th Cir. 2018) (" $[\mathrm{i}] \mathrm{n}$ the

[^35]absence of direct guidance from the FCC," interconnected VoIP service should be treated as an "information service."). ${ }^{97}$

Notwithstanding this objection, Frontier California has generally been responsive to CD Data Requests pertaining to VoIP services.

Whether or not the sunset of $\S 710$ has the effect of reinstating the CPUC's ratemaking authority with respect to VoIP services, as a practical matter the Commission no longer regulates most basic service rates in any event. When $\S 710$ was in effect, POTS customers were being migrated to VoIP either involuntarily or were being induced to switch to VoIP via the succession of POTS rate increases that AT\&T and, to a lesser extent, Frontier, were implementing. The migration of POTS customers to VoIP services is typically triggered when the customer elects to subscribe for broadband Internet access and/or video from either ILEC; such involuntary migration has had the effect of diminishing, if not eliminating altogether, any regulatory recourse that may have been available to the POTS customer with respect to service quality issues. The reinstatement of the Commission's jurisdiction with respect to VoIP services could help to eliminate this disparity.

## Principal forms of digital services that support VoIP telephony

Most residential and small business customers that are provided with VoIP services are served via one of four technology platforms:

- Digital Subscriber Line ("DSL")
- Fiber-to-the-Node (FTTN)
- Fiber-to-the-Premises (FTTP)
- Hybrid fiber/coax (HFC)

DSL. Digital services that are furnished over copper loops utilize "Digital Subscriber Line" ("DSL") technology. As illustrated in Figure 14.1 below, copper-based distribution architecture utilized relatively small capacity (up to about 300 or 600 pair) cables that would run down individual streets or roads connecting individual customer premises to "remote terminals" where each of the individual pairs in these low-capacity cables would be "cross-connected" to individual copper pairs in large capacity (typically greater than 1200 pairs) "feeder cables."

[^36]

Figure 14.1. Principal components of an ILEC local distribution network.

The effective bandwidth (data rate) that is available with DSL is inversely related to the physical route length of the copper portion of the subscriber's distribution network connection; if both the distribution and feeder cables involve copper wire, the total premises-to-central office route distance is controlling insofar as the effective DSL bandwidth that can be achieved. In general, DSL can only be provided where the aggregate length of the copper segment route (distribution + feeder) is less than about 18,000 route feet, which usually corresponds to about two miles of the straight-line distance, from the wire center.

FTTN. ILECs have been replacing copper feeder cables with fiber optic cables so as to shorten the length of the copper segment. The closer that fiber is brought to the ultimate customer premises, the greater the bandwidth that can be furnished to the end-user. In general, DSL without fiber can typically support bandwidths of around 1.0 megabits per second ("mbps") or less to perhaps as much as 5 or 6 mbps depending upon route distance. With FTTN architecture, where the fiber segment is extended to within a few thousand feet of the customer, DSL may be capable of supporting up to 15 to 20 mbps , but rarely more than that. AT\&T California's
principal form of broadband Internet access is via FTTN architecture, although the company has been expanding its deployment of FTTP in a few areas. ${ }^{98}$ Aa two-way VoIP telephone call requires around 100 kbps in each direction; however, since other activities may also be taking place over a customer's digital connection, a stable VoIP service generally requires a minimum bandwidth of about 3.0 mbps .

FTTP. ILECs may also provide Internet access (and VoIP) over a full fiber-to-the-premises architecture. Frontier obtained a substantial quantity of FTTP-served customer locations from Verizon through its 2016 acquisition. Verizon began deploying its FiOS FTTP infrastructure in the mid-2000s, although it largely discontinued most construction after 2010. ${ }^{99}$ Frontier has not been able to provide the total number of homes passed by FiOS-capable FTTP facilies as of the April 1, 2016 acquisition date. Homes passed figures for October 2018 and 2019 were provided for October 2018, and 1,466,503 for October 2019. ${ }^{100}$ As of December 2019, of AT\&T California VoIP customers were being served via FTTP.

HFC. Hybrid-fiber/coax is the architecture being used by cable TV MSOs such as Comcast and Charter to provide broadband Internet access and VoIP-based telephone services. HFC is a form of FTTN as used by ILECs, except that the "last mile" connection is provided by coaxial cable instead of twisted-pair copper wire. As with DSL, there is an inverse relationship between the route length of the coax segment and the bandwidth that can be supported, so cable MSOs have been bringing fiber closer to their customers so as to shorten the length of the coax segment. Unlike the ILECs' DSL-based hybrid fiber/copper approach, however, HFC is capable of supporting substantially higher bandwidths overall than DSL. Not surprisingly, cable MSOs have been far more successful both in attracting and in maintaining customers on their networks.

## ILEC VoIP service architecture

Circuit-switched telephone services are provided out of central office switching equipment that is located either at the customer's serving wire center or, more recently, out of a remote service unit ("RSU") that is connected, typically via a DS-3 ( 45 mbps ) digital channel, to a "host" central office that may be located usually within 20 or 30 miles from the serving wire center, although in theory there is no particular distance limit for the host/remote link.

ILEC VoIP services are physically connected to the customer out of the same serving wire center that had been used for legacy circuit-switched services, but the VoIP switch - a computer "server" that supports the VoIP software - can in theory be located anywhere on the Internet. As

[^37]99. "Verizon to End Rollout of FiOS," The Wall Street Journal, March 30, 2010. http://www.wsj.com/articles/SB10001424052702303410404575151773432729614 [accessed on July 16, 2015].
100. Frontier response to CD DR 15-F-6.
a result, a service interruption or outage can arise in the distribution infrastructure that connects the customer to the service wire center or anywhere beyond that point on the ILEC's IP network.

From a maintenance perspective, the feeder/distribution link between the serving wire center and the customer's premises is, as with legacy circuit-switched services, the location of most service outages. However, because VoIP requires locally-powered equipment located at the customer's premises, failures in these devices can also result in service outages.

> ILEC VoIP services are provided out of the same serving wire center that had been used for legacy circuit-switched services, but the VoIP switch itself can be located anywhere on the Internet. A service interruption or outage can arise in the local distribution infrastructure or anywhere beyond that point on the ILEC's IP network.

## VoIP service quality metrics: AT\&T California

AT\&T California began offering VoIP services in 2012. Demand for AT\&T VoIP service peaked in 2015 and has been on the decline since then. As shown in Table 14.1 below, the overwhelming majority of AT\&T VoIP service is being furnished over "copper" (DSL and FTTN) facilities; although the share of AT\&T VoIP services that were being furnished over FTTP facilities has increased significantly, from $\square$ in 2012 to $\square$ in 1019:

Table 14.1
AT\&T CALIFORNIA
VoIP SUBSCRIPTIONS AND TECHNOLOGIES
$2012-2019$
Fixed

End of Year	Total	FTTP	Coaxial Cable	Fixed Wireless \& Satellite	Copper	Other	$\begin{aligned} & \text { Pct } \\ & \text { FTTP } \end{aligned}$
2012			0	0	493,924	0	
2013			0	0	677,212	0	
2014			0	0	957,468	0	
2015			0	0	1,072,039	0	
2016			0	0	1,056,720	0	
2017			0	0	989,097	0	
2018			0	0	831,122	0	
2019			0	0	671,644	0	

Source: AT\&T FCC Form 477 filings, AT\&T California Response to CD Data Request 11-A-01.

ECDNDMICS AND

FCC Form 477 also collects data on VoIP services being furnished over coaxial cable, fixed wireless \& satellite, and "other." AT\&T California is not utilizing any of these technologies to provide its VoIP services.

Most AT\&T California VoIP services are provided using DSL technology over a hybrid Fiber-to-the-Node ("FTTN") / copper distribution architecture. However, AT\&T's deployment of Fiber-to-the-Premises ("FTTP") has been increasing; by the end of 2019, some of all VolP customers were being served via FTTP.

AT\&T has provided us with approximately 3.3-million VoIP-related Trouble Report records for the 2012-2019 period. Table 14.2 below compares the total number of annual Trouble Reports with the "average" number of VoIP subscriptions during each year, calculated by taking the average of the December 31 VoIP subscription count for the current and prior years.

		VoIP	AT\& SCRIPTIO	able 14.2   CALIFORNIA   NS AND TRO   012-2019	BLE REPO	RTS	
Year	EOY Subs	Average Subs for Year	Total Trouble Reports	Monthly TRs as Pct of Subs	Out-of-   Service Trouble Reports	Monthly OOS TRs as Pct of Subs	OOS TRs as Pct of all TRs
2011	$\square$						
2012			170,387	5.58\%	109,189	3.57\%	64.08\%
2013			423,661	5.85\%	282,685	3.90\%	66.72\%
2014			561,227	5.58\%	346,958	3.45\%	61.82\%
2015			586,742	4.68\%	316,543	2.52\%	53.95\%
2016			516,908	3.88\%	310,023	2.33\%	59.98\%
2017			451,563	3.40\%	296,370	2.23\%	65.63\%
2018			323,580	2.57\%	215,073	1.71\%	66.47\%
2019			270,798	2.45\%	185,504	1.68\%	65.80\%
Source: AT\&T FCC Form 477 filings, AT\&T California Response to CD Data Request 11-A-01.							

Expressed in relative terms, there appears to have been a steady improvement in the percentage of VoIP subscriptions that experience trouble conditions in any given month, both in total as well as in the incidence of out-of-service conditions. However, the relative incidence of out-ofservice reports as a percentage of all trouble reports has remained within the same $50 \%-69 \%$ ) over the full 8 -year period.

From 2012 through 2016, the percentage of AT\&T California VoIP access lines that had experienced out-of-service conditions in any given month was decreasing steadily, but those gains were reversed after 2016.

We have also tracked the average duration of all trouble and out-of-service conditions, as measured from the date/time of the initial report to the date/time when the trouble or out-ofservice conditions was fully cleared. As shown in Table 14.3 below, there was a small improvement in this metric through 2016, but over the last three years (2017-2019), durations of all trouble conditions as well as those involving service outages experienced a considerable spike, not unlike what had occurred for AT\&T California’s legacy POTS services.

		Table 14		
	AVERAG	AT\&T CALIF JRATION OF VoIP 2012-20	NIA   ROUBLE CONDI	
Year	Total Trouble Reports	Average Duration (Days)	Out-of-Service Trouble Reports	Average Duration (Days)
2012	170,387	1.27	109,189	1.22
2013	423,661	1.39	282,685	1.36
2014	561,227	1.33	346,958	1.26
2015	586,742	1.14	316,543	1.11
2016	516,908	1.19	310,023	1.17
2017	451,563	1.71	296,370	1.70
2018	323,580	2.24	215,073	. 2.21
2019	270,798	2.48	185,504	2.44
Source: AT\&T FCC Form 477 filings, AT\&T California Response to CD Data Request 11-A-01.				

The average duration of all trouble and out-of-service conditions was also shrinking up until 2016, but both metrics saw large upward spikes, with outage durations increase from less than 30 hours prior to 2017 to around 50 hours from 2017 onward.

Service issues have many causes and, particularly with VoIP, many are driven by conditions largely or entirely outside of the carrier's control. Unlike legacy POTS services where customer premises equipment ("CPE") consists mainly of technologically simple analog telephone handsets, VoIP services require, among other things, a local source of electrical power including some form of battery back-up, either an "analog telephone adapter" ("ATA") of some sort to convert between the analog microphone and earpiece signals associated with conventional

ECONOMICS AND
telephone handsets and the IP data stream that carries the VoIP signal as well as to translate touch tone signals into digital form, or one or more VoIP telephone handsets. ${ }^{101}$ If the VoIP service is physically provided in conjunction with the customer's broadband Internet access, a home router with an ethernet switch will also be needed. Such equipment is frequently provided (for a monthly rental fee) by the carrier, but some of it may also be provided by the customer, who must then assume responsibility for its installation and maintenance. Problems with any of the CPE can lead to service difficulties or outright interruptions. In many cases, when such situations arise, the carrier may provide technical support assistance to help the customer diagnose and correct the problem and restore service. Sometimes, all that is required is for the customer to briefly unplug and then reboot the router and/or modem. In many of these instances, however, when a customer reports a problem, a trouble ticket may nevertheless be created.

AT\&T trouble report records include a "cause code" to identify the nature of the problem as determined by the carrier, AT\&T has provided descriptions of approximately 190 cause codes, ${ }^{102}$ but some 300 unique cause codes are present in the 3.3-million VoIP trouble report records covering the 2012-2019 time frame. AT\&T classifies the cause codes into six (6) broad "major" categories and about 40 subcategories.. Table 14.4 below identifies the six categories and the total number of trouble reports in each category. Table 14.5 breaks this down for each year over the 2012-2019 period.

As shown in Table 14.4, some $58.4 \%$ of all trouble reports fall into categories 1-3, and are associated with distribution plant issues. Those falling into categories 1 and 2 are described as having been caused either by AT\&T employees or by other non-AT\&T personnel performing work on the distribution network. Category 3 , which represents roughly $22 \%$ of all trouble reports, are associated with some type of network facility issue that arises from time to time but is not attributable to any specific activity being undertaken by the company. Less than one percent (category 4) are caused by weather, with another $2.5 \%$ (category5) the result of various environmental conditions, including fires, animals and floods. Category 6 appears to be a sort of catch-all for other causes, the bulk of which (subcategories 62 and 65) appear to relate to customer premises issues, which likely include technical support with respect to the use of certain CPE components.

[^38]102. AT\&T Response to CD DR 13-A-1.


ECONOMICS AND

Some 58.4\% of the 3.3-million AT\&T California VoIP trouble reports created during the 2012-2019 period involved distribution plant issues.

Table 14.5

## AT\&T CALIFORNIA

## ANNUAL VoIP TROUBLE REPORT INCIDENTS BY MAJOR CAUSE CATEGORIES 2012-2019

Category	2012		2013	2014	2015	2016	2017	2018	2019	Total
1 AT\&T COMPANY   EMPLOYEE / SYSTEM	8,545	22,162	29,661	25,052	20,112	21,240	16,763	18,120	161,655	
2 NON-EMPLOYEE	68,236	166,965	214,988	156,449	125,411	131,165	100,991	77,694	$1,041,899$	
3 AT\&T PLANT OR   EQUIPMENT	33,980	91,648	129,582	170,392	139,266	83,345	38,174	37,482	723,869	
4 WEATHER	531	1,351	3,184	2,715	3,168	7,544	6,112	6,407	31,012	
5 MISC / SERVICE   ORDER ACTIVITY	2,018	5,311	10,309	20,727	15,715	13,458	7,618	7,770	82,926	
6 UNKNOWN /   ROUTINE	57,076	136,217	173,500	211,299	212,562	194,586	153,838	123,075	$1,262,153$	
TOTALS	170,386	423,654	561,224	586,634	516,234	451,338	323,560	270,753	$3,303,783$	

For legacy POTS services, GO 133-C/D utilizes a metric of "Trouble Reports per Hundred Access Lines per Month" ("TRPH") to assess overall service quality performance. In Table 14.6 below, we calculate average monthly TRPH for each years 2012-2019 and separately for each major cause category:

Table 14.6
AT\&T CALIFORNIA
MONTHLY VoIP TROUBLE REPORTS
PER HUNDRED ACCESS LINES (TRPH) BY MAJOR CAUSE CATEGORY 2012-2019

Category	2012	2013	2014	2015	2016	2017	2018	2019
Average VoIP access lines								
1 AT\&T COMPANY EMPLOYEE / SYSTEM	0.2797	0.3059	0.2949	0.1998	0.1510	0.1598	0.1330	0.1641
2 NON-EMPLOYEE	2.2334	2.3048	2.1374	1.2477	0.9416	0.9869	0.8015	0.7036
3 AT\&T PLANT OR EQUIPMENT	1.1122	1.2651	1.2883	1.3588	1.0457	0.6271	0.3030	0.3395
4 WEATHER	0.0174	0.0186	0.0317	0.0217	0.0238	0.0568	0.0485	0.0580
5 MISC / SERVICE ORDER ACTIVITY	0.0661	0.0733	0.1025	0.1653	0.1180	0.1013	0.0605	0.0704
6 UNKNOWN / ROUTINE	1.8682	1.8804	1.7249	1.6851	1.5960	1.4641	1.2209	1.1147
TOTAL TRPH	5.5769	5.8482	5.5796	4.6783	3.8761	3.3958	2.5678	2.4521
Note: Includes all Trouble Reports, Out-of-Service as well as non-OOS								

It is instructive to compare AT\&T California's service quality performance for its legacy POTS and its VoIP services. Table 14.7 below provides the monthly weighted (by access lines in each wire center) average out-of-service TRPH over the Phase 2 2018-2019 study period separately for AT\&T California legacy POTS and VoIP services. We have calculated the OOS TRPH for legacy services in several different ways:
(1) The first calculation was based upon all 606 AT\&T California wire centers for which both trouble report and access line data was available.
(2) In the second approach, we limited the analysis to only the 530 wire centers where VoIP was being offered as of the end of 2019.
(3) In the third calculation, we only looked at the 76 AT\&T California wire centers where VoIP was not being offered as of the end of 2019.
(4) In the fourth calculation, we have excluded the 27 wire centers where VoIP is offered but where no Trouble Report data for 2018 or 2019 was available.
(5) The fifth calculation, which includes the same wire centers that were included in (4) and is thus a direct comparison, provides the weighted average out-of-service trouble reports per hundred VoIP access lines.

Table 14.7   AT\&T CALIFORNIA   COMPARISON OF AVERAGE MONTHLY OUT-OF-SERVICE TROUBLE REPORTS PER HUNDRED ACCESS LINES (TRPH)   LEGACY POTS vs. VoIP SERVICES   2018-2019			
	Calculation method	Number of Wire Centers	Out-of-Service Reports per Hundred Access Lines
1	Legacy POTS access lines - all wire centers for which data is available	606	1.2366
2	Legacy POTS access lines - wire centers where VoIP is offered	530	1.2213
3	Legacy POTS access lines - wire centers where VoIP is NOT offered	76	1.9964
4	Legacy POTS access lines - wire centers where VoIP Trouble Report data is available	503	1.2138
5	VoIP access lines	503	1.6842

This analysis provides several important findings. In the direct comparison of the 503 wire centers where both VoIP and POTS are offered and where trouble report data is available for both services (calculations (4) and (5) above), the VoIP OOS TRPH is actually $38.7 \%$ greater than for POTS. And when we compare calculations (2) and (3) above, we find that the incidence of POTS out-of-service conditions is $63.5 \%$ greater in the 76 wire centers where VoIP is not offered than in the 530 wire centers where it is. This result is, of course, consistent with our finding, as discussed in Chapter 4A above, that most all POTS service quality metrics are better in wire centers that have been equipped for broadband services than in those where no broadband upgrade investments have been made.

In wire centers where both VoIP and POTS are offered and where trouble report data is available for both services, the relative incidence of VoIP service outages was $38.7 \%$ greater than it was for POTS over the full Phase $1 / 2$ study periods.

## Individual wire center VoIP service quality performance

Table 14.8 provides average VoIP lines in service for each AT\&T California wire center for each of the years 2014-2019, based upon AT\&T FCC Form 477 submissions. Tables 14.9 and 14.10 provide Total and Out-of-Service VoIP TRPH for all AT\&T wire centers where VoIP service is provided for the years 2015 through 2019. ${ }^{103}$ This analysis included all cause codes,
103. AT\&T provided us with its Form 477 VoIP access line data for end-of-year 2014 through 2019. Form 477 requires that carriers provide subscription counts by individual Census Block, rather than by wire center. With the assistance of the Geographic Information Systems (GIS) group in the Communications Division, we were able to associate each Census Block with a specific AT\&T California wire center, and on that basis we were able to develop
even those where the outage was the result of customer activity or misuse of the service. As we explained earlier, VoIP services involve considerably more customer premises equipment than is needed for legacy POTS-type services. We do not believe it would be correct to exclude sources of service problems merely because they are located at the customer's premises.

The AT\&T VoIP TRPH calculations shown in Tables 14.9 and 14.10 appear to fall well short of the GO 133-C/D threshold. Certain wire centers appear to exhibit particularly high TRPH numbers, but these seem to be due primarily to the nature of the underlying data upon which this analysis was based rather than to systemic issues in those locations. That said, the spike in overall trouble reports and in service outages that appears to have occurred starting in 2017 does raise some concerns, and it may be worthwhile for the Commission to pursue this further as the importance of VoIP as the preferred method of providing basic service grows in future years.

[^39]


ECDNOMICS AND


WC	CLLI	WC Name	2014	2015	2016	2017	2018	2019
925022	LFYTCA11	Lafayette						
949749	LGNGCA12	Laguna Niguel						
209187	LGRDCA11	Le Grande						
209185	LGRNCA12	LaGrande/D Pedro						
707301	LKBRCA11							
661405	LKLACA11	Lake Los Angeles						
707302	LKPTCA02	Lakeport						
619751	LKSDCA12	Lakeside						
530471	LLTNCA11							
916467	LNCLCA11	Lincoln						
661374	LNVYCA11	Leona Valley						
209191	LODICA01	Lodi						
707303	LOLTCA11	Lolita						
916470	LOMSCA11	Loomis						
310622	LOMTCA11	Lomita						
415023	LRKSCA11	Larkspur/Corte Madera						
213624	LSANCA02	Madison 02 / MO						
213625	LSANCA03	Madison 03 / MA						
323626	LSANCA05	LSAN Pleasant						
213627	LSANCA06	Union						
310628	LSANCA07	LSAN Airport						
323629	LSANCA08	LSAN Melrose						
213630	LSANCA09	Richmond						
323631	LSANCA10	LSAN Webster						
213632	LSANCA11	Rampart						
323633	LSANCA12	Normandy						
323634	LSANCA13	LSAN Plymouth						
323635	LSANCA14	LSAN Adams						
323636	LSANCA15	LSAN Axminster						
323638	LSANCA23	LSAN Capitol						
323640	LSANCA29	LSAN Sunset						
323641	LSANCA34	LSAN Angeles						
323642	LSANCA35	LSAN Montebello						
323643	LSANCA38	LSAN Republic						
323644	LSANCA56	LSAN Clinton						
650024	LSATCA11	Los Altos						
209193	LSBNCA12	Los Banos						
530469	LSMLCA11	Los Molinos						
661375	LTRKCA11	Little Rock						
925025	LVMRCA11	Livermore						
530468	LVOKCA11	Live Oak						
707304	LWLKCA11	Lower Lake						
559194	MADRCA11	Madera Main						
559243	MADRCA12	Madera Bonnadelli						
831113	MARNCA11	Marina						
209199	MDSTCA02	Modesto Main						
209200	MDSTCA03	Modesto Kellog / South / Ceres						
209201	MDSTCA04	Modesto Kingswood / Curtis / Salida						
209248	MDSTCA05	Modesto Tally						
707306	MDTWCA11	Middletown						
209202	MKHLCA12							
707307	MKVLCA11	McKinleyville						
650026	MLBRCA11	Millbrae						
408114	MLPSCA11	Milpitas						
415027	MLVYCA01	Mill Valley						
707305	MNDCCA11	Mendocino						
559195	MNDTCA11	Mendota						
650028	MNPKCA11	Menlo Park						
661376	MOJVCA01	Mojave						
925029	MORGCA12	Moraga						
805378	MRBACA11	Morro Bay						
209196	MRCDCA01	Merced						
530473	MRDNCA11							
209203	MRPHCA11	Murphys						
805377	MRPKCA12	Moorpark						
925030	MRTZCA11	Martinez						
650031	MSBHCA11	Moss Beach						
949806	MSVJCAAT	Mission Viejo						
530529	MTAGCA11	Montague						
831115	MTRYCA01	Monterey						
530474	MTSHCA12	Mount Shasta						
650032	MTVWCA11	Mountain View						
530472	MYVICA01	Marysville						
707310	NAPACA01	Napa						

气
冓
ECDNOMICS AND


WC	CLLI	WC Name	2014	2015	2016	2017	2018	2019
707316	PTVYCA11							
559210	PXLYCA11	Pixley						
530493	QNCYCA12							
760769	RAMNCA11	Ramona						
858770	RBRNCA11	Rancho Bernardo						
916541	RCKLCA01	Stanford Ranch						
916527	RCKLCA11	Rocklin						
510052	RCMDCA11	Richmond－SF						
530494	RDBLCA01	Red Bluff						
650053	RDCYCA01	Redwood City						
530495	RDNGCA02	Redding Main						
530531	RDNGCA11	Redding Enterpr						
818652	RESDCA01	Reseda						
707317	RIDECA11	Rio Dell						
916526	RILNCA12	Rio Linda						
909773	RILTCA11	Rialto						
858854	RNPSCA11	Rancho Penasquitos						
619852	RNSDCA11	Rancho San Diego						
626654	ROSMCA11	Rosemead						
858771	RSFECA12	Rancho Santa Fe						
661388	RSMDCA11	Rosamond						
949808	RSMGCA11	R．S．Margarita						
707337	RTPKCA11	Rohnert Park						
559215	RVDLCA11	Riverdale						
209214	RVRBCA11	Riverbank						
951774	RVSDCA01	Riverside Orange						
951775	RVSDCA11	Woodcrest						
661407	SAGSCA11	Saugus						
619795	SANTCA01	Santee						
805391	SATCCA12	Saticoy						
707321	SBSTCA11	Sebastapol						
916497	SCRMCA01	Sacramento Mn						
916498	SCRMCA02	SCRM－Ivanhoe						
916499	SCRMCA03	SCRM－Garden						
916500	SCRMCA11	SCRM－Gladstone						
916501	SCRMCA12	SCRM－Empire						
916502	SCRMCA13	SCRM－Fruitridge						
831116	SCVYCA01	Scotts Valley						
530508	SDSPCA11	Soda Springs						
559217	SELMCA11	Selma						
831117	SESDCA11	Seaside						
323655	SGATCA01	South Gate						
530504	SGSPCA11	Shingle Springs						
661392	SHFTCA11	Shafter						
530503	SHLKCA01	Shasta Lake						
818656	SHOKCA01	Sherman Oaks						
805393	SIMICA11	Simi						
949791	SJCPCA12	S．J．Capistrano						
209220	SKTNCA01	Stockton Main						
209221	SKTNCA11	Stockton Granite						
209222	SKTNCA12	Stockton Ashley						
209223	SKTNCA14	Stockton Redwood						
831118	SLDDCA11	Soledad						
661394	SLMNCA11	Solemint						
831119	SLNSCA01	Salinas Main						
831120	SLNSCA11	Hickory／Salinas						
831121	SLNSCA12	Glenview						
831122	SLNSCA13	Hunter						
831123	SLNSCA14	Moro						
714797	SLVRCA11	Silverado						
530507	SMAVCA11	Smartsville						
714788	SNANCA01	Bush						
714789	SNANCA11	Bristol						
714804	SNANCA12	Santa Ana West／SNAN Bolsa						
650055	SNBUCA02	San Bruno						
949776	SNCLCA12	San Clemente						
650056	SNCRCA11	San Carlos						
831125	SNCZCA01	Santa Cruz						
831126	SNCZCA11	Santa Cruz－Capitola						
619777	SNDGCA01	SNDG C Street						
619778	SNDGCA02	SNDG University						
858779	SNDGCA03	SNDG Linda Vista						
619780	SNDGCA05	SNDG Saipan						
619781	SNDGCA06	SNDG 37th Street						

气
ECONOMICS AND


WC	CLLI	WC Name	2014	2015	2016	2017	2018	2019
760800	VISTCA12	Vista						
760799	VLCTCA11	Valley Center						
707331	VLLJCA01	Vallejo						
818662	VNNYCA02	Van Nuys						
805400	VNTRCA02	Ventura / Fir						
805399	VNTRCA11	Ventura Main / Montalvo						
209234	VYSPCA11	Valley Springs						
209238	WANACA11	Wawana						
661402	WASCCA01	Wasco						
530523	WDLDCA11	Woodland						
559239	WDLKCA11	Woodlake						
530518	WEEDCA01	Weed						
707333	WEOTCA11	Weott						
310663	WLANCA01	Century City						
661401	WLBSCA11							
209236	WLLCCA11	Wallace						
310664	WLMGCA01	Wilmington						
707334	WLTSCA12	Willits						
530521	WLWSCA11	Willows						
925079	WNCKCA11	Walnut Creek						
707335	WNDSCA11	Windsor						
760801	WNSPCA12							
530522	WNTRCA11	Winters						
916519	WSCRCA11	Frontier						
209237	WTFRCA11	Waterford						
530520	WTLDCA12	Wheatland						
831141	WTVLCA01	Watsonville						
530525	YBCYCA01	Yuba City / Marysville						
707336	YNVLCA11	Yountville						
530524	YREKCA11	Yreka						
714802	YRLNCA11	Yorba Linda						
714809	YRLNCA12	Gypsum Canyon						
209240	YSMTCA11	Yosemite Main						
209241	YSMTCA12	El Portal						
	TOTALS							


AT\&T CALIFORNIA   VoIP TROUBLE REPORTS PER HUNDRED ACCESS LINES (TRPH) BY WIRE CENTER AVERAGE PER MONTH 2015-2019							
WC	CLLI	WC Name	2015	2016	2017	2018	2019
661410	ACTNCA11	Acton	13.1410	13.3903	11.3695	10.6481	13.1373
818600	AGORCA11	Agoura	6.1432	4.6244	3.4294	2.9803	2.9544
661351	AGDLCA11	Agua Dulce	2.9116	2.8571	1.8152	1.5683	1.4069
510002	ALMDCA11	Alameda/Central	4.4552	3.6312	3.0032	2.0746	1.8401
510001	ALBYCA11	Albany/Solano	5.3508	4.8163	3.9750	2.6746	2.2536
626601	ALHBCA01	Alhambra	4.4423	3.5220	3.0113	2.3470	2.0678
619700	ALPICA12	Alpine	6.2809	5.5102	3.5118	2.8990	2.9086
714702	ANHMCA11	Anaheim Cypress	5.0254	4.0505	3.6670	2.8607	2.5691
714703	ANHMCA12	Anaheim La Palma	5.1267	4.5279	4.3975	3.3232	4.7181
714701	ANHMCA01	Anaheim Lemon	3.3106	2.7617	2.7833	2.0488	1.9138
530427	ARSNCA11	Anderson	4.5971	3.8249	3.1020	2.2648	3.0063
209150	ANCMCA01	Angels Camp	7.8829	5.2503	3.2114	2.3951	2.1667
707275	ANGWCA11	Angwin	5.0265	4.3371	2.8837	2.1497	2.1620
714811	ANHMCA17	ANHM Hills	4.7684	4.1641	3.1073	2.0213	2.3136
925003	ANTCCA11	Antioch	4.2318	3.2844	2.7425	2.0799	2.0108
831100	APTSCA12	Aptos	6.6288	5.0807	3.8355	2.8478	2.5473
626602	ARCDCA11	Arcadia	3.6009	3.0111	2.2678	1.8557	1.5665
707276	ARCTCA11	Arcata	2.2088	2.6738	2.2634	2.2828	2.0110
951704	ARTNCA11	Arlington	4.1430	3.3540	3.1865	2.3941	2.2122
209151	ARNLCA11	Arnold	15.4167	4.6816	3.5036	1.7121	2.5556
831144	ARMSCA11	Aromas	10.2778	7.3757	4.9371	5.0554	2.8067
805352	ARGRCA12	Arroyo Grande	3.3880	3.4496	2.6958	2.0434	2.1774
661353	ARVNCA11	Arvin	9.4578	7.8231	5.5668	3.9277	4.2693
805354	ATSCCA11	Atascadero	4.1667	3.9585	3.5737	2.4199	3.1123
209153	ATWRCA12	Atwater	4.9495	4.8330	3.9427	2.6285	2.7652
530428	AUBNCA01	Auburn - Main	3.8703	3.3563	2.6059	2.2148	2.0989
530429	AUBNCA11	Auburn - Placer Hills	6.1014	5.5753	4.8209	2.7574	3.7492
559154	AVNLCA12	Avenal	4.6454	4.6711	3.5616	2.8388	2.6851
661361	BKFDCA17	Bakersfield West / Rosedale	4.4272	6.1828	5.4077	2.0368	1.8961
661358	BKFDCA13	Bakersfield Columbus	5.7173	4.1641	4.0260	3.7489	3.1580
661356	BKFDCA11	Bakersfield Empire	2.1906	3.2145	3.0939	1.1758	0.9654
661357	BKFDCA12	Bakersfield Main / Fairview	5.0935	3.7596	4.0309	3.2547	3.0449
661360	BKFDCA15	Bakersfield Mettler	-	-	0.0030	-	-
661409	BKFDCA19	Bakersfield Nomad	5.8830	2.5370	2.2067	3.2338	2.5788
661359	BKFDCA14	Bakersfield Temple	5.2693	5.5252	5.6153	3.0140	2.9570
949706	BALBCA01	Balboa	5.7662	4.8432	3.2667	2.6588	2.3156
805362	BYPKCA11	Baywood Park	5.3937	11.9266	7.6789	3.9007	3.3737
530431	BEALCA11	Beale	4.4218	2.8369	7.5000	1.1905	1.3889
209155	BVLYCA11	Bear Valley	8.7719	0.2692	0.1831	2.9052	2.0521
323604	BELLCA11	Bell	3.8551	3.7124	2.9985	2.3113	1.8918
831103	BNLMCA11	Ben Lomond	4.0776	1.0010	0.8855	1.7131	1.4295
707277	BNCICA11	Benicia	6.9387	10.9203	8.3129	3.4319	3.0600
510004	BKLYCA01	Berkeley/Bancroft	3.6275	3.5572	2.9882	1.9523	2.1633
925008	BTISCA11	Bethel Island	1.6726	4.3112	3.3055	1.4930	1.4765
310607	BVHLCA01	Beverly Hills	4.6368	7.3807	5.5904	2.3785	1.9450
530432	BGGSCA11	Biggs	8.3924	12.7148	8.3333	3.8549	4.0754
925082	BSRNCA70	Bishop Ranch	0.9703	1.2271	0.7772	0.6620	0.7062
831102	BLCKCA11	Boulder Creek	8.6283	0.5175	0.4825	3.3037	3.4973
760708	BRWLCA11	Brawley	4.2393	1.9927	1.4766	2.2763	1.8817
714709	BREACA12	Brea	5.5485	6.0046	5.7403	3.6778	3.4867
925007	BRWDCA12	Brentwood	8.9539	16.1826	9.9329	3.6859	3.7269
714789	SNANCA11	Bristol	4.7098	4.1077	4.3497	2.8136	2.6428
530434	BCWYCA11	Brockway	11.9205	3.4435	2.2152	2.2388	2.0784
714710	BNPKCA11	Buena Park	5.5511	8.1527	7.7134	3.1712	2.8302
818605	BRBNCA11	Burbank Palm	5.5101	5.7341	5.0765	3.1469	2.8581
818606	BRBNCA13	Burbank Thornton	0.4033	0.1650	0.0990	0.1888	0.2983
650006	BRLNCA01	Burlingame	5.3289	5.3619	4.1916	2.4357	2.5533
559242	BURLCA11	Burrell	1.9048	0.2387	0.1710	0.4154	0.3121
714788	SNANCA01	Bush	3.7292	5.4822	6.3299	2.5084	2.1825


WC	CLLI	WC Name	2015	2016	2017	2018	2019
818665	CLBSCA50	Calabasas / Los Virgenes	2.3126	1.6254	1.2370	1.3596	1.3008
818666	CLBSCA11	Calabasas / Park Sorrento	5.1891	6.8003	5.1459	3.1756	3.8983
760712	CLXCCA12	Calexico	6.2968	0.9028	0.6711	3.6895	2.5652
707282	CLSTCA11	Calistoga	5.1020	9.1747	6.9967	3.8069	3.8481
805364	CMBACA11	Cambria	4.1752	2.1959	1.5164	1.6949	1.9577
760714	CMPDCA01	Camp Pendleton	0.8349	0.4630	0.3169	0.2347	0.1098
818610	CNPKCA01	Canoga Park	5.3801	5.4063	5.0975	3.0111	2.8615
707327	UKIHCA12	Capella/lvanhoe	91.1111	1.9037	1.2263	51.2821	39.5833
760716	CRLSCA11	Carlsbad Harding	7.0274	8.0700	8.2577	4.7094	4.2639
760717	CRLSCA12	Carlsbad La Costa	6.9698	6.6477	5.6303	3.9869	3.5323
831105	CRMLCA11	Carmel Main	11.7135	3.9028	3.2130	3.2835	4.0843
831106	CRVYCA11	Carmel Valley	5.0207	3.9048	3.2133	2.4727	2.0256
408138	SNVACA01	Carrol / Sunnyvale	4.0095	3.3977	2.6505	2.0464	2.1062
559157	CRTHCA11	Caruthers	8.3714	2.7541	3.0810	3.4326	3.2609
661408	CSTCCA11	Castaic	4.3861	3.1894	2.5418	2.0351	1.9770
831107	CSVLCA11	Castroville	4.1063	1.0003	0.8518	2.3381	1.8195
805366	CYCSCA11	Cayucos	4.0830	8.7097	5.0633	2.0050	1.9102
530528	CNVYCA11	Central Valley	4.4281	0.3529	0.2409	2.2569	4.3583
310663	WLANCA01	Century City	9.3962	19.1024	13.6816	5.3705	4.7619
530438	CHICCA01	Chico Main	4.3018	6.2888	5.8209	2.4510	2.5987
559158	CHWCCA11	Chowchilla	4.7686	0.6118	0.4859	2.9922	2.1902
619719	CHVSCA12	Chula Vista Apache	4.4391	4.4041	4.3647	2.7180	2.3512
619718	CHVSCA11	Chula Vista Third Avenue	4.5787	7.0764	8.6739	2.9300	2.6250
925081	CYTNCA11	Clayton	5.2840	8.0985	6.2171	3.0677	2.9052
707283	CLOKCA11	Clear Lake Oaks	9.2593	1.1696	1.0862	3.8871	3.1179
707284	CODLCA11	Cloverdale	4.5151	3.4301	3.1136	2.9544	2.9073
559159	CLVSCA11	Clovis	4.0140	5.8812	5.3590	2.1237	1.9916
559160	CLNGCA01	Coalinga	4.9003	1.4673	1.2754	3.1447	2.1419
707285	CBMTCA11	Cobb Mountain	-	-	1.1411	2.0440	3.8667
650010	COLACA01	Colma-Daly City	5.1277	7.1876	6.3224	2.4791	2.6158
909720	COTNCA11	Colton	4.1748	1.2395	1.1020	2.3602	2.0323
310609	CMTNCA01	Compton	5.9767	9.9764	8.3569	3.1558	3.5772
925009	CNCRCA01	Concord	4.7626	3.2415	2.7644	2.6029	2.5280
707286	CORDCA12	Cordelia	1.6173	0.6229	0.4002	1.0715	0.9643
530440	CRNGCA12	Corning	5.1264	2.0199	1.7723	2.4855	2.9399
951721	CORNCA11	Corona	5.2996	7.6306	6.9804	2.8234	2.4771
949722	CRDMCA11	Corona Del Mar	3.9489	7.3013	5.0776	2.4928	1.6798
619723	CRNDCA11	Coronado	4.6826	4.5590	3.7886	2.4575	2.2849
949725	CSMSCA11	Costa Mesa	5.7526	7.9186	8.9433	3.5203	3.2615
707287	CTTICA12	Cotati	5.1641	6.7652	5.5089	2.7937	2.7749
530441	CTWDCA11	Cottonwood	16.1871	18.0879	13.6132	9.5679	11.5213
510011	CRCTCA02	Crockett	4.3993	0.2212	0.2295	2.7778	1.4019
209162	CWLDCA12	Crows Landing	6.6667	1.1218	0.5650	2.2436	2.0833
310608	CLCYCA11	Culver City	5.0212	7.5348	6.3469	2.9413	2.8080
925085	DAVLCA13	Danville - Tassajara (13)	5.9457	3.0704	2.7553	3.1384	2.9695
925012	DAVLCA12	Danville-Main (12)	6.8620	8.6669	6.3044	2.7468	2.6157
530442	DAVSCA11	Davis	4.9214	5.0992	3.9061	2.1453	2.0353
858727	DLMRCA12	Del Mar	5.7152	6.4677	5.6783	3.0766	2.7220
559163	DLRYCA11	Del Rey	6.3406	0.1794	0.1263	3.2486	2.9514
661367	DELNCA11	Delano	6.1844	3.1030	2.5597	2.8347	2.5436
559164	DINBCA01	Dinuba	4.7256	3.2115	2.1215	2.5400	2.2964
707443	DIXNCA11	Dixon	3.2245	3.9286	3.2075	1.6685	1.7275
619728	DLZRCA11	Dulzura	5.3672	4.6667	4.3210	5.1282	3.2710
530445	DNGNCA12	Dunnigan	22.7778	15.7738	4.9679	4.1667	4.4715
530446	DNSMCA11	Dunsmuir	3.1130	3.2585	2.9412	1.1602	1.2644
661368	ERLMCA11	Earlimart	16.5888	0.6713	0.5257	4.2587	3.8367
916478	NHLDCA11	Edgewood/N. Highl	4.1836	5.9554	6.1884	2.3984	2.2155
661369	EDWRCA01	Edwards	0.8621	0.1520	-	4.3860	-
619729	ELCJCA11	El Cajon	5.2443	8.2611	8.1579	3.1127	2.8830
760730	ELCNCA01	El Centro	3.6521	2.1503	1.9874	2.6802	2.1090
626611	ELMNCA01	El Monte	3.4978	4.1148	3.3984	1.6501	1.7518
310613	ELSGCA12	El Segundo Douglas	12.8928	3.0471	2.2958	5.8964	4.9259
949731	ELTRCA11	El Toro	3.4629	5.0293	4.8291	1.7898	1.8355
760732	ENCTCA12	Encinitas	4.4328	3.2750	2.7468	2.4261	2.2264
209192	ESCLCA11	Escalon	2.4641	3.9564	2.5011	1.3998	1.1191
760733	ESCNCA01	Escondido	4.4534	5.5563	5.8016	2.7949	2.6263


WC	CLLI	WC Name	2015	2016	2017	2018	2019
530450	ESPRCA11	Esparto	3.1031	0.4636	0.3088	1.4887	1.6567
714739	GRGVCA01	Euclid	4.8228	2.8173	2.7461	2.7582	2.6389
707289	EURKCA01	Eureka	3.2826	3.6244	3.4551	2.0626	1.7349
661383	OLDLCA11	Export / Oildale	4.2701	6.6826	6.9565	2.6194	2.2348
916451	FROKCA11	Fair Oaks	4.8710	5.5197	4.6281	2.5070	2.2637
707290	FRFDCA01	Fairfield	4.0904	6.7814	5.8570	2.3259	2.3237
760735	FLBKCA12	Fallbrook	5.1665	7.2436	6.6538	3.2463	2.9574
559165	FRVLCA11	Farmersville	5.5556	2.4404	1.9126	3.5992	2.7309
831108	FETNCA11	Felton	2.8084	2.3247	1.3863	1.4928	1.8318
805370	FLMRCA11	Fillmore	4.2698	1.5870	1.1265	1.9711	2.1385
559166	FRBHCA11	Firebaugh	4.7863	0.2679	0.2192	2.1161	1.4758
916536	FLSMCA14	Folsom - Blue Ravine	7.6550	4.0630	3.2495	3.9853	3.5810
916454	FLSMCA13	Folsom - El Dorado Hills	5.7176	4.3988	3.3682	2.8393	2.7468
916453	FLSMCA12	Folsom - Nimbus	2.8298	3.8189	3.0991	1.5352	1.2499
909736	FNTACA11	Fontana	5.0034	7.2797	7.0629	2.9821	2.9272
707291	FSVLCA11	Forestville	12.6016	5.6787	3.5494	4.1212	4.6512
707292	FTBRCA02	Fort Bragg	3.5183	6.2703	3.3008	1.6695	1.5248
707293	FTUNCA11	Fortuna	6.1789	2.3272	1.9080	3.8678	4.2453
510015	FRMTCA12	Fremont Adams (Oliver12)	4.3786	2.4726	1.9691	2.3115	2.1817
510014	FRMTCA11	Fremont Main 11	3.8603	6.1676	4.9440	1.8767	1.9124
559169	FRSNCA11	Fresno Baldwin	5.1780	4.8458	4.6644	2.5934	2.5973
559172	FRSNCA12	Fresno Clinton	3.8710	2.7431	2.9024	2.4006	1.9987
559168	FRSNCA01	Fresno Main	5.5404	1.9577	2.0273	4.0974	3.6569
559170	FRSNCA13	Fresno Sierra	5.2443	4.6859	4.3277	2.8418	2.8776
559245	FRSNCA14	Fresno West / Highway City	6.9401	3.9244	3.5762	3.9544	3.6032
559247	FRSNCA15	Fresno Woodward	6.2117	3.4812	2.7686	2.9802	3.2048
916519	WSCRCA11	Frontier	3.8864	7.2230	4.5579	2.0592	1.9052
714737	FUTNCA01	Fullerton	3.7534	6.3225	6.1719	2.3374	2.1886
209171	GALTCA11	Galt	4.4233	1.0830	0.9000	2.0168	1.9796
310615	GRDNCA01	Gardena	5.0979	8.4474	6.4355	2.5578	2.6525
858762	PCBHCA01	Garnet	4.3529	4.9764	7.5994	3.3842	3.1070
530457	GRTWCA11	Georgetown	-	-	-	-	10.5159
707294	GYVLCA11	Geyersville	5.9406	1.3316	0.9709	2.2523	2.0690
818614	GLDLCA11	Glendale	4.4183	5.5109	5.3211	2.4449	2.4065
831121	SLNSCA12	Glenview	1.1866	0.1985	0.1253	0.5389	0.5236
831110	GNZLCA11	Gonzales	7.8512	3.3517	2.4210	2.0481	1.6527
530459	GRVYCA01	Grass Valley	5.8875	11.1940	7.6014	3.3736	3.4107
831109	GNFDCA11	Green Field	5.7354	0.6980	0.4951	3.0146	2.6114
530461	GRDLCA11	Gridley	3.3652	4.4410	2.9603	1.9706	1.3913
707296	GUVLCA11	Guerneville	3.1667	1.4831	0.9792	1.3072	1.4214
209174	GUSTCA11	Gustine	4.2864	4.6566	2.9494	2.7376	2.9190
714809	YRLNCA12	Gypsum Canyon	3.5744	0.9530	0.7704	1.7241	1.9841
650016	HMBACA12	Half Moon Bay	13.8996	1.3650	1.1634	7.5464	6.3187
530462	HMCYCA11	Hamilton City	14.4231	2.8340	1.3062	2.2624	2.2989
559175	HNFRCA01	Hanford	4.4556	5.3853	4.7963	2.2861	2.2971
310618	HWTHCA01	Hawthorne	6.0096	9.0654	8.3645	2.9867	3.0955
510018	HYWRCA11	Hayward Depot	3.9291	2.2400	1.9290	2.0324	2.0386
510017	HYWRCA01	Hayward Main	4.0801	5.1232	3.9363	2.0510	1.8783
707297	HLBGCA11	Healdsburg	2.0566	3.1539	2.2327	1.2556	1.4971
209176	HERLCA11	Herald	4.9242	7.5130	5.8923	4.2222	2.8796
510080	HRCLCA11	Hercules-Pinole	4.1192	2.8628	2.2826	1.8856	1.8001
831120	SLNSCA11	Hickory/Salinas	3.4546	2.4215	2.1102	1.3839	1.5463
909741	HGLDCA11	Highland	5.1036	9.0711	7.7149	2.8105	2.4240
831111	HLSTCA11	Hollister	4.1898	4.5106	3.4596	2.0013	1.7171
323616	HLWDCA01	Hollywood	4.0697	5.6097	5.8256	2.3331	2.2088
760742	HLVLCA11	Holtville	4.3561	0.9835	0.9241	1.6553	2.0192
530463	HMWDCA11	Homewood	15.8951	12.9534	6.4352	2.5776	2.1368
858763	PCBHCA11	Hornblend	7.7730	1.4483	1.3347	6.0039	6.4493
209177	HGSNCA11	Hughson	5.1431	1.0261	1.0876	2.2578	2.4653
831122	SLNSCA13	Hunter	8.5341	7.0957	5.4192	3.5088	5.8244
323617	HNPKCA01	Huntington Park	4.2818	4.1667	4.2233	2.5468	2.3588
559178	HURNCA11	Huron	45.1149	1.0685	0.8232	7.3118	4.8043
415019	IGNCCA12	Ignacio	5.4535	1.7578	1.2538	2.3009	2.6149
760743	IMPRCA11	Imperial	2.7744	1.4613	1.0046	1.7193	1.5985
619744	IMBHCA11	Imperial Beach	5.8178	2.4979	2.9617	4.2830	3.8615
310619	IGWDCA01	Inglewood	5.1586	6.5082	5.5396	2.5363	2.6648


WC	CLLI	WC Name	2015	2016	2017	2018	2019
415020	INVRCA11	Inverness	10.0660	1.8357	1.2857	2.0227	1.1084
209179	IONECA11	Ione	45.3431	16.7385	14.0741	21.2963	20.9480
949745	IRVNCA01	Irvine	5.5660	8.1325	9.5282	3.4732	3.0165
949807	IRVNCA11	Irvine/Airport	0.8624	1.0429	1.2723	1.0042	1.0810
559180	IVNHCA11	Ivanhoe	4.7200	5.0452	5.1620	4.3210	2.3256
209181	JCSNCA01	Jackson	3.4214	6.0701	2.9450	1.5319	1.3038
209182	JMTWCA11	Jamestown	109.0909	2.4096	2.5950	75.6944	64.1026
619851	JAMLCA60	Jamul	15.1667	3.8432	3.7457	8.1439	7.9418
760748	JULNCA12	Julian	2.5831	4.3142	2.3201	1.3493	1.5793
831112	KGCYCA11	King City	4.4720	3.6387	2.5471	2.6629	1.8784
559183	KGBGCA11	Kingsburg	5.1897	3.2125	2.8912	2.6876	2.2982
530465	KYBRCA11	Kyburz	0.8258	0.3497	0.5005	0.7527	0.6127
818621	LACRCA11	La Crescenta	5.6635	11.2177	6.7862	2.5294	2.6582
858750	LAJLCA11	La Jolla / Girard	6.9783	3.2239	2.8758	4.5227	3.7846
619752	LAMSCA01	La Mesa	3.8687	4.8272	5.2070	2.5585	2.4140
925022	LFYTCA11	Lafayette	5.1782	9.5596	7.2781	2.7379	2.5761
209185	LGRNCA12	LaGrande/D Pedro	3.5441	2.4837	2.1693	1.9144	2.2556
949749	LGNGCA12	Laguna Niguel	5.4468	6.8757	7.0574	3.1238	2.8137
661405	LKLACA11	Lake Los Angeles	2.9762	4.5550	3.5439	1.9144	1.6618
530532	GRVYCA11	Lake of the Pine	10.3348	1.8364	1.4234	6.3373	7.7815
707302	LKPTCA02	Lakeport	3.6475	3.9495	2.9700	2.0320	1.9439
619751	LKSDCA12	Lakeside	4.2688	4.8077	4.5709	2.3087	2.3374
661372	LAMTCA11	Lamont	6.4783	0.8643	0.6670	3.6047	2.2501
415023	LRKSCA11	Larkspur/Corte Madera	6.6427	2.2603	1.6044	3.0091	3.0448
209187	LGRDCA11	Le Grande	6.5657	0.2587	0.1762	2.0022	1.5931
661373	LEBCCA11	Lebec	5.1336	3.7651	2.9595	1.6741	1.9048
559188	LEMRCA11	Lemore Main	5.3866	5.7450	5.5093	2.8035	3.1667
559189	LEMRCA12	Lemore Wyman	18.9815	0.3974	0.2335	0.9174	0.1667
661374	LNVYCA11	Leona Valley	1.9477	1.1678	1.0236	1.5859	0.9503
916467	LNCLCA11	Lincoln	3.8889	5.3878	4.8936	2.0686	2.2051
661375	LTRKCA11	Little Rock	18.9815	4.8160	4.8913	6.2169	6.9554
530468	LVOKCA11	Live Oak	5.0838	0.5508	0.5634	3.0475	2.9136
925025	LVMRCA11	Livermore	4.0047	7.3537	4.8659	1.8401	1.7873
209190	LCFRCA11	Lockeford	9.7424	2.8535	2.3939	3.6062	4.4365
209191	LODICA01	Lodi	4.0685	6.2197	4.7779	1.9007	1.9777
707303	LOLTCA11	Lolita	1.0234	0.0526	0.0348	0.1996	0.1623
310622	LOMTCA11	Lomita	5.7372	9.2263	6.7954	2.9865	2.9554
916470	LOMSCA11	Loomis	11.7080	17.4754	10.9795	7.1484	5.7381
707319	SNRSCA11	Los Alamos	4.5527	1.9626	1.5496	2.1004	2.0005
650024	LSATCA11	Los Altos	15.2677	5.1480	3.8974	8.4058	8.0863
209193	LSBNCA12	Los Banos	4.1918	4.9524	3.2949	2.0242	1.8899
530469	LSMLCA11	Los Molinos	12.2984	1.9138	2.0175	4.6315	3.8838
707304	LWLKCA11	Lower Lake	5.9930	6.5760	4.0063	2.0991	3.0322
323635	LSANCA14	LSAN Adams	4.3209	2.5578	2.3383	2.4490	2.3309
310628	LSANCA07	LSAN Airport	5.1427	5.7294	4.9330	2.5801	2.7778
323641	LSANCA34	LSAN Angeles	4.4559	5.7372	5.4639	2.8718	2.4731
323636	LSANCA15	LSAN Axminster	7.5150	8.3813	6.1983	3.5020	3.5857
323638	LSANCA23	LSAN Capitol	3.9702	2.1936	1.9400	2.7167	2.4614
323644	LSANCA56	LSAN Clinton	5.3673	4.0881	3.3169	3.1057	2.9252
323629	LSANCA08	LSAN Melrose	4.3673	4.0472	3.9698	2.4814	2.1159
323642	LSANCA35	LSAN Montebello	4.3623	3.8664	3.7951	2.4841	2.4851
323626	LSANCA05	LSAN Pleasant	5.9522	9.0936	7.7477	3.6382	3.3385
323634	LSANCA13	LSAN Plymouth	7.3511	6.9410	5.5225	4.1713	4.4542
323643	LSANCA38	LSAN Republic	3.8663	3.2693	3.0617	2.4805	2.0633
323640	LSANCA29	LSAN Sunset	4.0044	2.5652	2.8024	3.0134	2.7709
323631	LSANCA10	LSAN Webster	5.8643	7.5737	6.9226	3.4649	3.1465
559243	MADRCA12	Madera Bonnadelli	1.2219	0.6157	0.4646	0.6457	0.6989
559194	MADRCA11	Madera Main	4.0920	4.6381	3.8841	2.3071	2.0302
213624	LSANCA02	Madison 02 / MO	4.3936	4.0512	4.2970	2.9925	2.3569
213625	LSANCA03	Madison 03 / MA	2.5831	1.7843	2.3725	2.1190	1.8509
831113	MARNCA11	Marina	6.6019	4.5310	3.4875	3.2646	3.4940
925030	MRTZCA11	Martinez	5.0109	4.7330	4.1701	2.5999	2.6555
530472	MYVICA01	Marysville	4.4780	2.0704	1.7927	2.4666	2.5883
408139	SNVACA11	Mathilda / Sunneyvale	2.0211	0.5298	0.5513	1.3995	1.0901
707307	MKVLCA11	McKinleyville	3.9711	4.1973	3.8726	2.4644	2.6957
707305	MNDCCA11	Mendocino	14.9306	0.7906	0.4724	3.3333	2.3333


WC	CLLI	WC Name	2015	2016	2017	2018	2019
559195	MNDTCA11	Mendota	10.7407	11.2195	8.3761	6.5000	5.4890
650028	MNPKCA11	Menlo Park	10.2381	17.5000	10.4647	4.3983	5.0207
209196	MRCDCA01	Merced	4.0292	4.8979	4.1267	1.8815	1.8052
707306	MDTWCA11	Middletown	6.3441	0.9146	0.7084	2.5561	2.5386
415027	MLVYCA01	Mill Valley	5.4038	2.3556	2.1731	2.4733	2.5170
650026	MLBRCA11	Millbrae	4.7183	7.0764	5.2910	2.4729	2.8567
408114	MLPSCA11	Milpitas	3.6018	4.1106	3.8601	1.9098	1.9260
949806	MSVJCAAT	Mission Viejo	5.9241	7.4943	8.0882	4.1009	4.3381
209200	MDSTCA03	Modesto Kellog / South / Ceres	4.9343	1.9111	1.6262	2.6406	2.5192
209201	MDSTCA04	Modesto Kingswood / Curtis / Salida	3.4808	1.9057	1.7169	1.5056	1.6879
209199	MDSTCA02	Modesto Main	6.4057	9.0592	7.3475	2.9175	2.9491
209248	MDSTCA05	Modesto Tally	1.8092	2.1319	1.4946	0.8143	0.7216
661376	MOJVCA01	Mojave	6.3298	2.5383	1.7515	6.2883	3.8333
530529	MTAGCA11	Montague	2.7473	0.9354	0.6260	0.8922	1.0929
831115	MTRYCA01	Monterey	5.4563	8.0321	5.7840	2.4034	2.6329
805377	MRPKCA12	Moorpark	5.7529	7.2502	6.0072	2.5720	2.3598
925029	MORGCA12	Moraga	6.2197	8.0620	5.1806	3.1333	3.4553
831123	SLNSCA14	Moro	71.3542	51.3889	40.5039	22.6397	18.1435
805378	MRBACA11	Morro Bay	1.8084	2.1535	1.6817	1.1499	1.0221
650031	MSBHCA11	Moss Beach	10.1010	1.0124	0.8559	2.7236	2.4116
530474	MTSHCA12	Mount Shasta	4.7459	0.9793	0.9137	2.1470	1.8069
650032	MTVWCA11	Mountain View	3.8284	6.7388	4.4521	1.8971	1.7789
209203	MRPHCA11	Murphys	10.8059	18.1818	10.0000	2.5522	3.4606
707310	NAPACA01	Napa	4.7175	5.9978	4.7046	2.5625	2.3728
619754	NTCYCA11	National City - Highland	3.7324	4.9499	4.8896	3.0711	2.6392
530475	NVCYCA11	Nevada City	8.0169	4.2903	4.2444	4.3900	5.8637
916476	NWCSCA11	Newcastle	6.3866	6.1085	4.7502	3.8260	3.9909
661379	NHLLCA01	Newhall	4.6055	4.2594	4.0437	2.6550	2.4267
209204	NWMNCA12	Newman	3.7674	4.4748	3.7265	2.2329	1.8610
818646	NHWDCA01	NHWD / Lankershim	4.0788	2.7425	2.7746	2.5554	2.5685
818647	NHWDCA02	NHWD / Magnolia	4.5627	4.5550	4.7157	2.9797	2.7429
707311	NICECA11	Nice	12.6126	0.3465	0.3299	3.4953	4.2457
530477	NCLSCA12	Nicolaus	0.2618	0.0370	0.0397	0.6041	0.3925
760855	NILDCA11	Niland Main	31.2500	2.7778	3.4014	16.6667	9.8039
805380	NIPMCA11	Nipomo	3.4442	3.9607	2.7152	1.8687	1.3480
323633	LSANCA12	Normandy	4.6631	3.7796	3.2409	2.5149	2.4737
916537	NSCRCA12	North Natomas	4.5822	2.6524	2.6196	2.6391	2.4821
530480	NSJNCA11	North San Juan	2.4590	0.2049	0.1776	1.0417	1.3770
818648	NORGCA11	Northridge	4.3624	6.6702	7.0265	2.6983	2.7344
209205	OKDLCA11	Oakdale	3.5857	4.1445	3.1875	1.8765	1.7183
510038	OKLDCA11	Oakland 45th/Olympic(Central)	4.9675	5.0908	4.2081	2.4571	2.5891
510036	OKLDCA03	Oakland Franklin	4.7499	4.4755	4.2565	3.0448	2.9024
510039	OKLDCA12	Oakland Holly	4.5795	5.3205	4.2861	2.7315	2.5481
510037	OKLDCA04	Oakland Kellog(Fruitvale)	5.8140	4.7317	4.7959	2.9559	2.8211
510040	OKLDCA13	Oakland Mountain	4.2973	2.7150	1.8273	2.0712	2.0591
925041	OKLYCA11	Oakley	4.4834	2.5017	2.0131	2.0642	1.9252
805381	OKVWCA11	Oakview	446.6667	1.1200	1.0897	61.6667	60.5556
760758	OCSDCA11	Oceanside / Mission	4.8936	6.4194	7.7479	3.0840	2.9935
805382	OJAICA11	Ojai	3.4095	1.3366	1.1400	2.3401	2.1244
714759	ORNGCA11	Orange Chapman	3.9142	6.5306	6.1611	2.3309	2.1447
559206	ORCVCA11	Orange Cove	6.7691	1.7220	1.2149	5.1587	3.2878
714760	ORNGCA13	Orange Olive	5.9986	4.7727	3.6892	2.8521	2.6804
714761	ORNGCA14	Orange West	3.6395	1.7060	1.5348	2.6133	2.2274
916482	ORVACA11	Orangevale	2.5307	3.8662	2.6626	1.5434	1.3453
925042	ORNDCA11	Orinda	14.5276	3.7281	3.4801	8.7459	9.8797
530483	ORLDCA11	Orland	4.7878	4.6318	3.5454	2.2706	1.9043
559207	ORSICA11	Orosi	3.7787	2.2815	2.1435	2.7555	2.0888
530485	ORVLCA12	Oroville East	5.6868	5.0732	4.1630	2.5741	2.8620
530484	ORVLCA11	Oroville Main	5.8881	1.9059	1.5557	3.9661	3.1496
619853	OTMSCA11	Otay Mesa	2.8278	2.6304	3.1569	1.7605	2.1212
650043	PCFCCA11	Pacifica	7.1204	10.2199	7.7558	3.3501	3.5012
661384	PLDLCA01	Palmdale	5.2204	3.6853	2.9733	2.9067	2.6794
661412	PLDLCA11	Palmdale East / 47TH ST	3.0641	1.6181	1.4363	1.7974	1.7478
650045	PLALCA02	Palo Alto Main	3.8510	6.4688	4.6509	1.8463	1.9468
650046	PLALCA12	Palo Alto South	3.7821	1.8815	1.3137	1.4549	1.5037
530486	PRDSCA11	Paradise Main	7.4520	6.5094	5.5472	5.0758	5.0641


WC	CLLI	WC Name	2015	2016	2017	2018	2019
530487	PRDSCA12	Paradise Pines	5.5205	4.0435	3.5001	3.1919	5.4577
562649	PRMTCA01	Paramount	4.1040	6.2056	6.1424	2.4509	2.4633
415073	SNRFCA11	Parkway	3.7745	3.8429	2.7681	1.6484	1.5307
559208	PRLRCA11	Parlier	4.3548	2.4788	1.4777	3.8221	3.3654
626651	PSDNCA12	Pasadena / Lake	4.8460	5.2176	4.0249	2.5781	2.3616
626650	PSDNCA11	Pasadena / Mt Wilson / Green	4.0944	7.0261	5.5479	2.2584	2.2425
805385	PSRBCA01	Paso Robles	2.8544	0.3598	0.3788	1.5887	1.5358
760764	PALACA11	Pauma Valley	0.3602	0.2231	0.2064	0.3228	0.2933
951765	PDLYCA11	Pedley	2.9519	4.1635	4.3279	2.0629	1.6938
650051	PSCDCA11	Pescadero	7.0755	2.1968	1.4620	0.9443	1.6616
707314	PTLMCA01	Petaluma	4.6118	6.5558	4.7448	1.8700	1.9988
619766	PNVYCA11	Pine Valley	3.3658	3.2300	1.9573	1.6667	2.3810
805386	PIRUCA11	Piru	0.2734	0.0703	0.0590	0.1779	0.1792
805387	PSBHCA11	Pismo Beach	2.3913	1.0164	0.6694	1.5066	1.1594
925050	PSBGCA11	Pittsburg Bay Point / Willow	4.4293	2.6072	2.2311	2.4866	2.3041
925049	PSBGCA01	Pittsburg Main	4.6587	3.3721	2.9711	2.4648	2.5603
559210	PXLYCA11	Pixley	5.0813	7.1946	4.9315	3.0425	1.9522
714767	PLCNCA11	Placentia	4.7258	5.4957	5.1035	2.8462	2.4425
530489	PLVLCA11	Placerville - Main	5.2068	8.2746	6.3310	3.0763	3.7224
530490	PLVLCA12	Placerville - Niagara	11.8421	3.2938	2.7187	8.9041	8.5470
925083	PLTNCA13	Pleasanton Hacienda	0.7446	0.2233	0.2318	0.5348	0.6606
925047	PLTNCA12	Pleasanton Main/Hopyard	5.1455	9.7972	7.1219	2.5231	2.3346
209212	PLMOCA11	Plymouth	12.1622	0.6223	0.5696	2.7397	3.3011
559213	PTVLCA11	Porterville	4.5548	2.1243	1.5608	2.1283	1.9319
858768	POWYCA11	Poway Midland	5.1578	6.3506	6.4431	3.7084	3.8499
949808	RSMGCA11	R. S. Margarita	4.6902	5.7012	5.5108	2.6611	2.2299
760769	RAMNCA11	Ramona	5.1613	6.1278	4.5148	2.1797	2.3084
213632	LSANCA11	Rampart	2.9443	2.3527	2.2358	1.9114	1.8146
858770	RBRNCA11	Rancho Bernardo	3.3790	3.9022	3.7669	2.0790	1.8320
858854	RNPSCA11	Rancho Penasquitos	4.2937	2.3928	1.9838	2.2397	2.1285
619852	RNSDCA11	Rancho San Diego	3.7412	2.1050	2.1247	2.4823	2.1088
858771	RSFECA12	Rancho Santa Fe	49.9045	8.3416	6.0988	6.2289	5.6702
530494	RDBLCA01	Red Bluff	4.3007	1.0014	0.8714	2.3823	2.0753
530531	RDNGCA11	Redding Enterpr	3.7486	2.6091	3.3077	2.7322	2.7318
530495	RDNGCA02	Redding Main	9.2094	1.9983	2.1678	4.9932	4.9641
650053	RDCYCA01	Redwood City	5.0995	6.9160	5.4032	2.4441	2.5945
818652	RESDCA01	Reseda	6.2195	7.9728	7.7709	3.3863	3.3930
909773	RILTCA11	Rialto	5.8048	7.1292	7.5396	3.5993	3.0582
510013	ELSBCA11	Rich-Appian Way/El Sobrante	5.4014	4.7017	3.6696	3.0253	2.9432
213630	LSANCA09	Richmond	5.2530	1.9845	1.9427	3.3060	3.2194
510052	RCMDCA11	Richmond-SF	4.8780	7.3436	6.2852	2.9894	2.6442
707317	RIDECA11	Rio Dell	3.4591	0.2048	0.1825	3.2300	2.5588
916526	RILNCA12	Rio Linda	2.7498	4.1572	4.0949	2.1085	1.7210
209214	RVRBCA11	Riverbank	7.8602	9.4742	7.1408	3.1008	3.3378
559215	RVDLCA11	Riverdale	3.5240	0.8766	0.7172	2.1597	2.1807
951774	RVSDCA01	Riverside Orange	4.2197	5.4060	6.1362	2.7141	2.4389
916527	RCKLCA11	Rocklin	6.4014	1.4995	1.1661	3.2647	2.9163
707337	RTPKCA11	Rohnert Park	4.9515	2.4425	1.6170	2.5333	2.4881
661388	RSMDCA11	Rosamond	5.5556	5.7479	4.7040	3.4694	3.1476
626654	ROSMCA11	Rosemead	3.9768	4.4341	3.7010	2.2001	2.1515
949791	SJCPCA12	S. J. Capistrano	6.3618	1.8336	1.7021	3.9439	3.4698
916497	SCRMCA01	Sacramento Mn	2.8452	3.4201	3.2519	1.6701	1.6424
831119	SLNSCA01	Salinas Main	4.1935	3.1029	2.4987	1.8026	1.9274
650055	SNBUCA02	San Bruno	4.7164	5.8974	4.3839	2.4152	2.3205
650056	SNCRCA11	San Carlos	3.7152	4.4528	3.1960	1.7738	1.7152
949776	SNCLCA12	San Clemente	4.8879	1.4833	1.5682	2.5027	2.5544
626658	SNGBCA01	San Gabriel	6.5813	10.5934	8.2481	3.2432	3.4689
408134	SNJSCA18	San Jose Almaden Valley	5.9699	3.7881	2.7214	2.6470	2.4482
408131	SNJSCA13	San Jose Chynoweth	4.8006	3.7846	3.1720	2.4258	2.4455
408130	SNJSCA12	San Jose Dial Way	5.3762	4.9185	3.7380	2.8479	2.7682
408133	SNJSCA15	San Jose Evergreen / San Felipe	5.4288	2.1458	1.7287	2.3035	2.5254
408132	SNJSCA14	San Jose Foxworthy	4.2763	4.1759	3.4559	2.2563	2.1514
408145	SNJSCA21	San Jose Junction	4.9321	1.4601	1.7889	4.1338	3.1704
408128	SNJSCA02	San Jose Main	3.3899	5.4190	5.2506	2.0115	1.9861
408129	SNJSCA11	San Jose White Rd	3.9423	3.5705	3.1661	2.0147	1.9284
831127	SNJNCA11	San Juan Baustista	2.5292	0.2874	0.3587	0.8646	0.7014


WC	CLLI	WC Name	2015	2016	2017	2018	2019
510070	SNLNCA11	San Leandro	5.6479	9.9375	6.8088	2.8343	2.8421
805389	SNLOCA01	San Luis Obispo	2.1582	0.5124	0.4353	1.5743	0.8805
408136	SNMACA11	San Martin	4.3981	3.0540	3.3923	3.5477	2.8309
650071	SNMTCA11	San Mateo	5.3138	9.4905	6.4314	2.4610	2.3746
310659	SNPDCA01	San Pedro	4.7827	3.8581	3.4262	2.9833	2.7792
415072	SNRFCA01	San Rafael Main	7.9460	9.1429	7.2542	4.0110	4.1274
925074	SNRMCA11	San Ramon	5.1992	4.9369	4.5918	2.5534	2.4402
619794	SNYSCA12	San Ysidro	5.2806	5.2399	5.1165	3.5042	3.4082
714804	SNANCA12	Santa Ana West / SNAN Bolsa	4.1214	1.8864	1.8782	2.8312	2.7458
408137	SNTCCA11	Santa Clara Bellomy	4.2114	6.7995	5.5793	2.3167	2.3060
408143	SNTCCA01	Santa Clara Spacepark	2.1277	0.9243	0.8461	1.9082	1.8027
831125	SNCZCA01	Santa Cruz	7.2318	2.6792	2.1439	3.5969	2.6038
831126	SNCZCA11	Santa Cruz-Capitola	4.2552	4.9179	3.8766	1.9396	1.7520
707320	SNRSCA01	Santa Rosa Main	4.7376	5.7615	4.5886	2.2485	2.2091
619795	SANTCA01	Santee	3.5610	2.1292	2.2473	2.3301	2.0710
805391	SATCCA12	Saticoy	3.8503	1.9271	2.0761	1.9843	2.0764
661407	SAGSCA11	Saugus	5.3176	4.5742	3.8417	2.4556	2.5717
415075	SSLTCA11	Sausalito Larkspur	4.6399	2.1088	1.6417	2.4438	2.5602
831116	SCVYCA01	Scotts Valley	5.9269	2.7425	2.4718	2.9675	2.8092
916501	SCRMCA12	SCRM - Empire	5.0716	4.0637	3.6636	2.7005	2.5428
916502	SCRMCA13	SCRM - Fruitridge	5.6631	2.4154	2.1508	2.7647	2.8211
916499	SCRMCA03	SCRM - Garden	5.3607	5.0750	4.5347	2.8549	2.8523
916500	SCRMCA11	SCRM - Gladstone	4.2223	2.2938	2.2983	2.4486	2.3123
916498	SCRMCA02	SCRM - Ivanhoe	5.8294	6.7729	5.8905	3.2370	3.1373
831117	SESDCA11	Seaside	3.4904	4.3106	3.8752	1.9249	1.7341
707321	SBSTCA11	Sebastapol	6.3228	4.6472	3.7847	2.7263	2.6913
559217	SELMCA11	Selma	4.9863	8.3231	6.3303	2.5071	2.2214
415058	SNFCCA01	SF Bush Pine	2.3819	1.1143	1.1852	2.0598	1.6606
415064	SNFCCA13	SF Evergreen-9th Ave	4.7889	2.5327	1.9661	2.3722	2.1567
415068	SNFCCA21	SF Folsom	2.6907	1.9322	2.3104	1.9785	2.0440
415061	SNFCCA06	SF Juniper-Onondaga	4.9936	5.2883	4.0017	2.2559	2.2376
415067	SNFCCA12	SF Larkin-Steiner	4.2201	3.2721	2.8412	2.0361	2.0216
415059	SNFCCA04	SF Market-McCoppin	3.4847	3.7806	2.9613	1.7473	1.7698
415060	SNFCCA05	SF Mission-25th St	4.7867	4.2525	3.1067	2.1522	1.9848
415065	SNFCCA14	SF Montrose-19th	3.8837	5.2237	3.9232	1.8519	1.9236
415066	SNFCCA17	SF Third St.	3.9714	1.6258	1.5042	2.1003	2.0548
661392	SHFTCA11	Shafter	6.4879	1.9072	1.3079	3.3728	2.9306
818656	SHOKCA01	Sherman Oaks	5.9200	9.2757	8.0005	3.3373	3.2190
530504	SGSPCA11	Shingle Springs	4.2897	3.4742	2.8974	2.0443	1.9595
714797	SLVRCA11	Silverado	15.9420	2.9536	2.3551	1.2195	1.6667
805393	SIMICA11	Simi	5.0088	5.1764	4.2552	2.5351	2.4558
530507	SMAVCA11	Smartsville	6.8376	6.0000	5.0926	2.6316	2.2472
619781	SNDGCA06	SNDG 37th Street	2.4789	2.2286	3.0455	2.2364	2.2986
619777	SNDGCA01	SNDG C Street	3.0051	2.5677	3.6033	2.6514	2.6133
619782	SNDGCA11	SNDG College	4.1815	2.9687	3.0907	2.7556	2.7881
858779	SNDGCA03	SNDG Linda Vista	3.7361	3.7736	4.7987	2.7443	2.4170
619783	SNDGCA12	SNDG Market Street	5.7906	4.7798	4.8922	3.3205	3.2909
858786	SNDGCA16	SNDG Mira Mesa	3.3144	3.3675	3.3650	2.1695	2.1641
858785	SNDGCA15	SNDG Regents	2.6683	2.5463	3.6480	2.1996	2.3302
619780	SNDGCA05	SNDG Saipan	4.6628	2.8665	2.9796	3.2776	2.6847
619784	SNDGCA14	SNDG Tennyson	4.2695	3.1313	3.5413	3.1041	2.9085
619778	SNDGCA02	SNDG University	3.0166	2.8487	3.8721	2.4199	2.5078
530508	SDSPCA11	Soda Springs	55.5556	2.6427	4.3575	7.0743	16.4083
831118	SLDDCA11	Soledad	5.7214	2.4904	1.8553	2.7676	2.2597
661394	SLMNCA11	Solemint	4.7927	5.9031	5.9137	2.8531	2.5452
707323	SONMCA12	Sonoma	5.6155	6.6044	4.3267	2.4294	2.6400
209218	SNRACA13	Sonora	3.5448	1.1631	1.1560	1.9750	1.9522
626660	SPSDCA11	Sout Pasadena / Mission	4.5356	3.6198	2.9705	2.6313	2.2404
323655	SGATCA01	South Gate	3.7831	4.2937	3.6903	2.4566	1.9968
530512	STAHCA13	South Tahoe - Meyers/Apache	6.4738	11.7253	5.9051	2.6397	1.9628
530509	STAHCA01	South Tahoe - Sussex	5.4426	3.3830	2.6767	2.4201	2.1095
530511	STAHCA12	South Tahoe - Tamarack	10.7843	0.1375	0.7353	5.1587	3.1250
949810	IRVNCA12	Spectrum-Irvine	1.2614	0.4219	0.4928	1.5873	2.0266
707318	STHNCA11	St. Helena	5.4209	3.7317	2.7273	2.9371	3.1683
916541	RCKLCA01	Stanford Ranch	5.2596	5.3899	3.7214	2.3510	2.2789
415076	STBHCA11	Stinson Beach	9.5710	3.5590	1.9849	2.2097	1.7464


WC	CLLI	WC Name	2015	2016	2017	2018	2019
209222	SKTNCA12	Stockton Ashley	0.9322	0.2675	0.2633	0.6971	0.6603
209221	SKTNCA11	Stockton Granite	6.3730	5.9351	5.0261	3.2147	3.2084
209220	SKTNCA01	Stockton Main	5.0459	5.5175	5.4077	2.8253	2.9347
209223	SKTNCA14	Stockton Redwood	4.3460	3.5423	3.0603	1.8350	2.0819
707324	SUISCA11	Suisun City	10.3333	3.5674	4.5131	14.3275	9.0136
209225	STCKCA11	Sutter Creek	3.9058	3.6745	2.6256	1.4119	1.8403
530514	THCYCA01	Tahoe City	5.8081	0.7182	0.6148	1.2333	2.1238
661395	THCHCA01	Techachapi	2.7630	3.5542	2.6383	1.4368	1.3094
805396	TMTNCA11	Templeton	3.1783	4.7386	3.6210	1.4583	1.3675
209227	THTNCA11	Thornton	6.0000	2.6042	2.4494	3.8288	2.6144
415005	TBRNCA11	Tiburon	2.6667	5.3753	3.6683	1.4787	1.4392
559229	TPTNCA11	Tipton	9.2141	2.6440	3.3172	3.3987	4.1284
310661	TRNCCA11	Torrance	4.3993	2.9556	2.3299	2.1612	2.0258
209230	TRACCA11	Tracy	4.8855	7.7376	6.7154	2.5978	2.5367
530515	TRUCCA11	Truckee	4.7882	7.4245	4.3681	1.2756	1.1045
559231	TULRCA11	Tulare	4.3362	4.4825	3.9857	2.1790	2.2642
209232	TRLCCA11	Turlock	4.2014	3.3732	2.9349	2.2836	2.1540
714798	TUSTCA11	Tustin 11	5.0934	5.6848	4.4628	2.5473	2.3472
209233	TWHRCA11	Twain Harte	7.7617	0.6813	0.7002	3.2268	3.8867
707328	UKIHCA01	Ukiah Main	4.5501	6.4295	4.9515	2.9915	2.7230
213627	LSANCA06	Union	3.5531	1.6585	1.6650	2.5165	2.4519
510078	UNCYCA11	Union City	5.7497	9.2013	7.5077	2.9132	2.9968
707329	UPLKCA11	Upper Lake	6.6872	0.3919	0.2585	2.7348	2.4892
707330	VCVLCA12	Vacaville	4.4216	7.2369	6.0218	2.3026	2.2809
707331	VLLJCA01	Vallejo	4.9754	6.0413	5.2842	2.4520	2.3961
760799	VLCTCA11	Valley Center	6.1594	1.9499	1.6592	2.9201	2.4941
818662	VNNYCA02	Van Nuys	4.5387	3.3530	3.2282	2.8693	2.7570
805400	VNTRCA02	Ventura / Fir	4.0980	0.9524	0.8855	2.4446	2.3631
805399	VNTRCA11	Ventura Main / Montalvo	4.7383	4.4471	3.6126	2.4611	2.2093
559235	VISLCA11	Visalia Main	4.4386	3.8472	3.3277	2.3382	2.2468
760800	VISTCA12	Vista	3.4725	3.0068	3.4990	2.4386	2.4036
916479	NSCRCA11	Wabash	3.9558	2.8844	2.8283	2.5576	2.3512
209236	WLLCCA11	Wallace	4.3210	10.9756	5.8608	1.0300	1.9309
925079	WNCKCA11	Walnut Creek	4.4991	7.4008	5.2306	2.1686	2.0496
661402	WASCCA01	Wasco	3.1123	2.1510	1.6343	2.1082	1.7963
209237	WTFRCA11	Waterford	5.1039	1.1377	0.9023	3.3469	2.6547
831141	WTVLCA01	Watsonville	3.7312	6.0875	4.5169	1.6398	1.5218
530518	WEEDCA01	Weed	5.2846	2.3139	2.1441	1.7456	2.0492
530520	WTLDCA12	Wheatland	1.1111	1.3486	0.5890	0.6318	0.6441
530535	GRVYCA12	Wildwood	5.5342	7.3815	4.9314	2.0857	2.2642
707334	WLTSCA12	Willits	3.6822	0.6946	0.4296	2.1916	2.4249
530521	WLWSCA11	Willows	4.7346	4.6916	2.6893	2.6646	2.0949
310664	WLMGCA01	Wilmington	5.1972	8.7795	7.4579	2.5572	2.5517
707335	WNDSCA11	Windsor	5.7712	1.8789	1.2594	2.7431	2.2543
530522	WNTRCA11	Winters	16.5698	13.8441	8.8542	9.6065	6.2738
951775	RVSDCA11	Woodcrest	5.9260	3.0166	2.2311	2.6056	2.4585
559239	WDLKCA11	Woodlake	7.6000	1.0039	0.9335	5.0432	2.5087
530523	WDLDCA11	Woodland	4.6767	6.8469	5.1506	2.2975	2.3740
714802	YRLNCA11	Yorba Linda	4.5488	7.4491	5.2123	2.1576	2.1597
707336	YNVLCA11	Yountville	5.3407	0.2763	0.2574	2.3810	3.3794
530524	YREKCA11	Yreka	3.8050	5.4593	3.3333	2.5641	2.0657
530525	YBCYCA01	Yuba City / Marysville	3.9746	2.5839	2.1931	2.0957	2.1292


|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Table | 14.10 |  |  |
|  |  | VoIP OUT-OF-SERVICE REPORTS PER HUNDRED ACCESS LINES (TRPH) BY WIRE CENTER |  |  |  |


WC	CLLI	WC Name	2015	2016	2017	2018	2019
650006	BRLNCA01	Burlingame	2.7514	3.1063	2.6051	1.5444	1.6619
559242	BURLCA11	Burrell	1.1905	0.1302	0.1140	0.4154	0.1873
714788	SNANCA01	Bush	2.1790	3.5477	4.5392	1.8480	1.6153
818665	CLBSCA50	Calabasas / Los Virgenes	1.3078	0.8481	0.7161	0.9211	0.8455
818666	CLBSCA11	Calabasas / Park Sorrento	2.6099	3.7081	2.9844	1.9095	2.7387
760712	CLXCCA12	Calexico	4.0621	0.6254	0.4388	2.7933	2.0165
707282	CLSTCA11	Calistoga	3.2158	4.7276	3.9934	2.5070	2.8236
805364	CMBACA11	Cambria	2.5325	1.3586	0.9548	1.1299	1.2698
760714	CMPDCA01	Camp Pendleton	0.4496	0.4085	0.1901	0.1369	0.1098
818610	CNPKCA01	Canoga Park	2.6800	3.0754	3.2003	1.9257	1.8701
707327	UKIHCA12	Capella/lvanhoe	55.5556	1.2691	0.7990	39.7436	27.0833
760716	CRLSCA11	Carlsbad Harding	3.5324	4.4051	5.2503	2.9764	2.7155
760717	CRLSCA12	Carlsbad La Costa	3.3015	3.5897	3.2795	2.4075	2.3041
831105	CRMLCA11	Carmel Main	6.3922	2.3748	2.1077	2.0644	2.7009
831106	CRVYCA11	Carmel Valley	2.7433	2.1429	1.6949	1.5093	1.5636
408138	SNVACA01	Carrol / Sunnyvale	2.1527	2.0390	1.7683	1.3321	1.4683
559157	CRTHCA11	Caruthers	5.0989	1.7604	2.2319	2.3987	2.4909
661408	CSTCCA11	Castaic	2.1252	1.6847	1.5890	1.2727	1.3168
831107	CSVLCA11	Castroville	2.4155	0.6214	0.5859	1.5987	1.4556
805366	CYCSCA11	Cayucos	2.6774	4.8387	3.4459	1.1696	1.1939
530528	CNVYCA11	Central Valley	2.4922	0.1962	0.1555	1.2346	2.9785
310663	WLANCA01	Century City	5.1447	11.8227	9.0231	3.6257	3.2080
530438	CHICCA01	Chico Main	2.3498	3.6232	3.7811	1.5144	1.9637
559158	CHWCCA11	Chowchilla	2.3139	0.3779	0.3231	1.9845	1.4957
619719	CHVSCA12	Chula Vista Apache	1.9701	2.4248	2.6666	1.7191	1.4625
619718	CHVSCA11	Chula Vista Third Avenue	2.4518	4.2811	5.9444	1.9781	1.8169
925081	CYTNCA11	Clayton	2.3484	4.2465	3.4247	1.9629	1.9322
707283	CLOKCA11	Clear Lake Oaks	4.9858	0.6213	0.6280	2.7689	1.9841
707284	CODLCA11	Cloverdale	2.6198	2.1328	2.0757	2.1876	2.1554
559159	CLVSCA11	Clovis	2.0692	3.4815	3.4756	1.4055	1.3818
559160	CLNGCA01	Coalinga	3.0039	0.9446	0.8261	2.3795	1.5801
707285	CBMTCA11	Cobb Mountain	-	-	0.7261	1.2579	2.8000
650010	COLACA01	Colma-Daly City	2.7315	4.4827	4.0862	1.6823	1.8017
909720	COTNCA11	Colton	2.3860	0.7339	0.7627	1.5950	1.4463
310609	CMTNCA01	Compton	3.5837	6.6205	6.0525	2.2683	2.6143
925009	CNCRCA01	Concord	2.5248	1.8797	1.7756	1.6937	1.7181
707286	CORDCA12	Cordelia	0.8272	0.3985	0.2303	0.7570	0.7558
530440	CRNGCA12	Corning	2.7126	1.2828	1.1478	1.5222	2.1997
951721	CORNCA11	Corona	2.7218	4.3886	4.4137	1.8221	1.6170
949722	CRDMCA11	Corona Del Mar	2.2067	4.6211	3.2440	1.4783	1.0371
619723	CRNDCA11	Coronado	2.5937	2.5785	2.2237	1.5152	1.5507
949725	CSMSCA11	Costa Mesa	3.1743	4.8730	6.0488	2.2794	2.1954
707287	CTTICA12	Cotati	2.8297	4.3426	3.5993	1.8821	1.9433
530441	CTWDCA11	Cottonwood	10.7914	9.9483	8.1425	5.8642	7.3826
510011	CRCTCA02	Crockett	2.3689	0.1250	0.1578	1.7806	1.0903
209162	CWLDCA12	Crows Landing	2.0000	0.8013	0.4237	1.6026	1.7361
310608	CLCYCA11	Culver City	2.7233	4.6046	3.9913	1.9188	1.9430
925085	DAVLCA13	Danville - Tassajara (13)	2.6919	1.6478	1.5870	1.6979	1.7967
925012	DAVLCA12	Danville-Main (12)	3.1780	4.6858	3.8803	1.8033	1.6291
530442	DAVSCA11	Davis	2.5788	3.0371	2.4723	1.3579	1.3283
858727	DLMRCA12	Del Mar	2.7915	3.5072	3.5186	1.8218	1.6850
559163	DLRYCA11	Del Rey	5.0725	0.1182	0.0937	2.8249	2.2569
661367	DELNCA11	Delano	3.8899	2.1273	1.9177	2.0926	1.8588
559164	DINBCA01	Dinuba	3.0996	1.9269	1.3099	1.6354	1.6031
707443	DIXNCA11	Dixon	1.9154	2.3529	1.9307	1.0376	1.1912
619728	DLZRCA11	Dulzura	3.1073	2.1667	1.8519	4.2735	2.1807
530445	DNGNCA12	Dunnigan	14.1667	10.4167	3.1250	2.7778	3.3198
530446	DNSMCA11	Dunsmuir	1.7720	2.5107	1.5931	0.7357	0.6897
661368	ERLMCA11	Earlimart	10.4361	0.4624	0.3686	3.1020	2.8852
916478	NHLDCA11	Edgewood/N. Highl	2.3440	3.5494	4.2478	1.6556	1.5915
661369	EDWRCA01	Edwards	0.2874	0.0507	-	3.5088	-
619729	ELCJCA11	El Cajon	2.6677	4.4964	5.1961	2.0260	1.9709
760730	ELCNCA01	El Centro	2.2599	1.3834	1.2712	1.8268	1.4279


WC	CLLI	WC Name	2015	2016	2017	2018	2019
626611	ELMNCA01	El Monte	2.2137	2.7778	2.5280	1.2122	1.3013
310613	ELSGCA12	El Segundo Douglas	6.1510	1.6903	1.4203	3.4174	3.5019
949731	ELTRCA11	El Toro	1.7955	2.9637	3.0074	1.1753	1.2567
760732	ENCTCA12	Encinitas	2.1523	1.7935	1.7295	1.4898	1.4088
209192	ESCLCA11	Escalon	1.3366	2.5503	1.6039	0.9076	0.7748
760733	ESCNCA01	Escondido	2.1875	3.1135	3.8503	1.8984	1.8182
530450	ESPRCA11	Esparto	1.6266	0.2776	0.1463	0.8533	1.1377
714739	GRGVCA01	Euclid	2.8033	1.8064	1.9031	1.8877	1.8285
707289	EURKCA01	Eureka	2.3246	2.4115	2.2983	1.4396	1.0824
661383	OLDLCA11	Export / Oildale	2.2686	4.1783	4.4075	1.6556	1.6011
916451	FROKCA11	Fair Oaks	2.5822	3.1914	2.9569	1.6049	1.5115
707290	FRFDCA01	Fairfield	2.1911	3.9600	3.7730	1.4447	1.5472
760735	FLBKCA12	Fallbrook	2.7826	4.2298	4.2804	2.3031	1.9985
559165	FRVLCA11	Farmersville	3.2282	1.6308	1.1840	2.2698	1.6867
831108	FETNCA11	Felton	1.6010	1.2876	0.8100	0.9816	1.1986
805370	FLMRCA11	Fillmore	2.4399	0.8264	0.5693	1.1710	1.5109
559166	FRBHCA11	Firebaugh	2.9345	0.1792	0.1204	1.6143	1.0687
916536	FLSMCA14	Folsom - Blue Ravine	3.7537	2.0880	1.9916	2.4296	2.2910
916454	FLSMCA13	Folsom - El Dorado Hills	2.7846	2.3522	2.0794	1.6165	1.7009
916453	FLSMCA12	Folsom - Nimbus	1.3641	1.9949	1.8774	1.0045	0.7716
909736	FNTACA11	Fontana	2.7433	4.5333	4.7254	2.1014	2.0195
707291	FSVLCA11	Forestville	6.9106	3.5088	2.2377	2.4848	3.0362
707292	FTBRCA02	Fort Bragg	2.3906	3.9311	2.3013	1.0753	1.1021
707293	FTUNCA11	Fortuna	3.9837	1.5985	1.1954	2.6723	3.1447
510015	FRMTCA12	Fremont Adams (Oliver12)	2.3258	1.4156	1.2898	1.5795	1.5079
510014	FRMTCA11	Fremont Main 11	1.9900	3.6189	3.2713	1.2468	1.3121
559169	FRSNCA11	Fresno Baldwin	3.0708	3.1195	3.2960	1.9028	1.8677
559172	FRSNCA12	Fresno Clinton	2.2741	1.7554	2.0195	1.7138	1.4313
559168	FRSNCA01	Fresno Main	3.4476	1.3102	1.3644	2.9851	2.6569
559170	FRSNCA13	Fresno Sierra	3.0218	2.8435	2.9652	2.0130	2.1391
559245	FRSNCA14	Fresno West / Highway City	3.8419	2.4271	2.3487	2.5999	2.4444
559247	FRSNCA15	Fresno Woodward	2.9494	2.0956	1.7923	1.9735	2.0342
916519	WSCRCA11	Frontier	2.1275	4.5510	2.9882	1.3913	1.2730
714737	FUTNCA01	Fullerton	2.0403	3.7517	4.2030	1.5778	1.5289
209171	GALTCA11	Galt	2.5993	0.6034	0.5967	1.3312	1.3629
310615	GRDNCA01	Gardena	2.8506	5.2302	4.4921	1.7766	1.8603
858762	PCBHCA01	Garnet	2.1724	2.8845	5.0604	2.1355	1.9942
530457	GRTWCA11	Georgetown	-	-	-	-	7.7381
707294	GYVLCA11	Geyersville	4.4554	1.0309	0.6068	1.6892	1.6092
818614	GLDLCA11	Glendale	2.2804	3.1980	3.1951	1.5893	1.6418
831121	SLNSCA12	Glenview	0.5933	0.1126	0.0888	0.3079	0.4363
831110	GNZLCA11	Gonzales	5.1423	2.2652	1.5205	1.5784	1.2104
530459	GRVYCA01	Grass Valley	2.8326	6.2367	4.2630	2.1596	2.3629
831109	GNFDCA11	Green Field	3.4173	0.4554	0.3145	2.2975	1.9794
530461	GRDLCA11	Gridley	1.9617	2.6920	1.8798	1.5198	1.0252
707296	GUVLCA11	Guerneville	1.6667	1.0593	0.6732	0.7793	0.8082
209174	GUSTCA11	Gustine	2.5466	2.4231	1.9372	1.8079	2.1281
714809	YRLNCA12	Gypsum Canyon	1.7914	0.4765	0.4655	1.0400	1.3779
650016	HMBACA12	Half Moon Bay	7.5933	0.8649	0.7233	4.8426	4.4872
530462	HMCYCA11	Hamilton City	7.6923	1.6869	0.6270	1.2066	1.8883
559175	HNFRCA01	Hanford	2.4349	3.3136	3.3599	1.5302	1.6590
310618	HWTHCA01	Hawthorne	3.2617	5.9044	5.7559	2.1957	2.1784
510018	HYWRCA11	Hayward Depot	2.2533	1.3920	1.2879	1.4344	1.4054
510017	HYWRCA01	Hayward Main	2.1637	3.1121	2.5956	1.3028	1.2858
707297	HLBGCA11	Healdsburg	1.1238	1.8606	1.4321	0.8278	1.1516
209176	HERLCA11	Herald	3.1061	5.6995	4.2929	3.1111	1.5707
510080	HRCLCA11	Hercules-Pinole	2.1467	1.7022	1.5449	1.2467	1.2538
831120	SLNSCA11	Hickory/Salinas	1.8930	1.4975	1.4580	0.9979	1.0597
909741	HGLDCA11	Highland	2.8641	5.6143	5.3577	1.8903	1.6607
831111	HLSTCA11	Hollister	2.2557	2.7074	2.2815	1.3488	1.1474
323616	HLWDCA01	Hollywood	2.3524	3.6353	3.8853	1.5985	1.5921
760742	HLVLCA11	Holtville	2.6831	0.6247	0.6052	0.9989	1.3005
530463	HMWDCA11	Homewood	9.4136	8.2902	4.3981	1.5516	1.6453


WC	CLLI	WC Name	2015	2016	2017	2018	2019
858763	PCBHCA11	Hornblend	4.1965	0.9241	0.7765	3.6089	4.1667
209177	HGSNCA11	Hughson	2.8036	0.6450	0.7392	1.4895	1.7014
831122	SLNSCA13	Hunter	4.9197	4.4554	4.1922	2.4721	4.6595
323617	HNPKCA01	Huntington Park	2.7342	2.8869	3.0856	1.9494	1.7254
559178	HURNCA11	Huron	30.1724	0.6615	0.5070	5.6452	3.7367
415019	IGNCCA12	Ignacio	2.8129	1.1051	0.8348	1.2481	1.7720
760743	IMPRCA11	Imperial	1.3366	0.9383	0.5923	1.1529	1.0220
619744	IMBHCA11	Imperial Beach	3.0686	1.5365	2.0325	3.0105	2.7230
310619	IGWDCA01	Inglewood	2.8770	4.1028	3.7643	1.7934	1.8625
415020	INVRCA11	Inverness	6.1056	1.1946	0.7857	1.4159	0.7389
209179	IONECA11	lone	27.4510	11.5661	9.3210	14.1534	14.0673
949745	IRVNCA01	Irvine	2.9483	4.8527	5.7107	2.3342	1.9185
949807	IRVNCA11	Irvine/Airport	0.4332	0.6901	0.8429	0.7429	0.7691
559180	IVNHCA11	Ivanhoe	3.0262	3.4388	3.4871	3.3011	1.9380
209181	JCSNCA01	Jackson	1.7954	3.3229	1.6946	1.0336	0.9438
209182	JMTWCA11	Jamestown	61.3636	1.4056	1.7361	50.6944	48.0769
619851	JAMLCA60	Jamul	9.3333	2.3592	2.0619	5.3977	5.1454
760748	JULNCA12	Julian	1.7296	2.8761	1.6177	0.8405	1.0170
831112	KGCYCA11	King City	2.9634	2.3229	1.6784	1.8519	1.3372
559183	KGBGCA11	Kingsburg	3.2738	2.1280	2.0277	1.9439	1.7767
530465	KYBRCA11	Kyburz	0.5255	0.3497	0.3504	0.4301	0.4902
818621	LACRCA11	La Crescenta	3.0773	6.2458	4.4163	1.6700	1.7579
858750	LAJLCA11	La Jolla / Girard	3.6863	1.7816	1.8437	2.6450	2.4646
619752	LAMSCA01	La Mesa	2.0046	2.8021	3.4299	1.7271	1.6005
925022	LFYTCA11	Lafayette	2.5409	5.6807	4.6351	1.6080	1.6056
209185	LGRNCA12	LaGrande/D Pedro	2.0115	1.3725	1.5344	1.1261	1.6917
949749	LGNGCA12	Laguna Niguel	2.5246	3.7203	4.3388	2.0008	1.8021
661405	LKLACA11	Lake Los Angeles	1.5625	2.2380	2.2342	1.2950	1.2219
530532	GRVYCA11	Lake of the Pine	6.1863	1.2320	0.7734	4.0918	6.0155
707302	LKPTCA02	Lakeport	1.9546	2.3271	1.6706	1.4213	1.4378
619751	LKSDCA12	Lakeside	2.1544	2.5304	3.0789	1.5132	1.5295
661372	LAMTCA11	Lamont	4.1330	0.6314	0.4860	2.8295	1.9362
415023	LRKSCA11	Larkspur/Corte Madera	3.4734	1.3242	0.9789	1.8456	1.9827
209187	LGRDCA11	Le Grande	4.1414	0.1752	0.1270	1.0281	1.4093
661373	LEBCCA11	Lebec	2.6723	2.0582	1.9315	1.0832	1.5686
559188	LEMRCA11	Lemore Main	3.1052	3.6866	3.3951	1.9676	2.3939
559189	LEMRCA12	Lemore Wyman	4.1667	0.1104	0.1062	0.3058	0.1667
661374	LNVYCA11	Leona Valley	0.9460	0.5767	0.5479	1.0772	0.5117
916467	LNCLCA11	Lincoln	1.9390	2.8896	3.0851	1.3593	1.4986
661375	LTRKCA11	Little Rock	13.8889	3.1926	3.0193	4.4974	4.0682
530468	LVOKCA11	Live Oak	2.8307	0.2864	0.3102	1.9966	1.9012
925025	LVMRCA11	Livermore	2.0513	4.1405	3.1573	1.1557	1.2219
209190	LCFRCA11	Lockeford	6.1192	1.5657	1.4453	2.8752	3.4772
209191	LODICA01	Lodi	2.1945	3.6993	3.0605	1.2441	1.3844
707303	LOLTCA11	Lolita	0.4386	0.0351	0.0244	0.0998	0.1623
310622	LOMTCA11	Lomita	3.2952	5.7256	4.6210	2.0710	2.1263
916470	LOMSCA11	Loomis	5.8678	9.2124	5.6872	3.9692	3.4166
707319	SNRSCA11	Los Alamos	2.4579	1.1769	0.9960	1.3127	1.3829
650024	LSATCA11	Los Altos	8.1980	2.9777	2.4701	5.2508	5.6520
209193	LSBNCA12	Los Banos	2.2780	2.9351	2.1350	1.3295	1.2908
530469	LSMLCA11	Los Molinos	7.2581	1.1356	1.3417	2.9750	2.7217
707304	LWLKCA11	Lower Lake	3.5262	4.1140	2.6265	1.4414	2.3766
323635	LSANCA14	LSAN Adams	2.6703	1.7304	1.6790	1.8191	1.8059
310628	LSANCA07	LSAN Airport	2.7886	3.3293	3.2491	1.6569	1.8553
323641	LSANCA34	LSAN Angeles	2.8612	3.8775	4.2006	2.2471	1.9929
323636	LSANCA15	LSAN Axminster	4.2188	5.2498	4.1942	2.3090	2.4664
323638	LSANCA23	LSAN Capitol	2.4504	1.4099	1.4173	2.0553	1.8302
323644	LSANCA56	LSAN Clinton	3.0318	2.5750	2.2996	2.1157	2.0150
323629	LSANCA08	LSAN Melrose	2.2849	2.2551	2.4751	1.5901	1.3991
323642	LSANCA35	LSAN Montebello	2.5944	2.4484	2.7225	1.7955	1.8062
323626	LSANCA05	LSAN Pleasant	3.7100	6.2463	5.6180	2.7342	2.4665
323634	LSANCA13	LSAN Plymouth	4.4356	4.5219	3.8991	2.9222	3.1129
323643	LSANCA38	LSAN Republic	2.3126	2.1737	2.1736	1.7663	1.5613


WC	CLLI	WC Name	2015	2016	2017	2018	2019
323640	LSANCA29	LSAN Sunset	2.0781	1.4105	1.7741	1.9584	1.8747
323631	LSANCA10	LSAN Webster	3.1835	4.6821	4.5863	2.3412	2.1171
559243	MADRCA12	Madera Bonnadelli	0.5840	0.3711	0.3018	0.4600	0.5242
559194	MADRCA11	Madera Main	2.5220	2.9900	2.7370	1.6479	1.4583
213624	LSANCA02	Madison 02 / MO	2.6790	2.5264	2.7214	2.0673	1.7255
213625	LSANCA03	Madison 03 / MA	1.4496	1.1309	1.6299	1.5485	1.3778
831113	MARNCA11	Marina	3.4878	2.7186	2.3758	2.2108	2.3591
925030	MRTZCA11	Martinez	2.4647	2.7901	2.5891	1.6405	1.8926
530472	MYVICA01	Marysville	2.3994	1.2427	1.1482	1.5778	1.6679
408139	SNVACA11	Mathilda / Sunneyvale	1.2302	0.3339	0.3986	0.9368	0.7618
707307	MKVLCA11	McKinleyville	2.2563	2.6961	2.4957	1.7530	1.9420
707305	MNDCCA11	Mendocino	7.2917	0.5483	0.2907	2.6190	1.7500
559195	MNDTCA11	Mendota	6.9630	7.4797	6.4957	4.9167	4.2914
650028	MNPKCA11	Menlo Park	5.3968	9.6552	6.7780	2.6273	3.3773
209196	MRCDCA01	Merced	2.2977	3.0784	2.6335	1.2658	1.2907
707306	MDTWCA11	Middletown	4.1667	0.5618	0.4226	1.6926	1.7660
415027	MLVYCA01	Mill Valley	2.7888	1.3157	1.3816	1.5281	1.5954
650026	MLBRCA11	Millbrae	2.5565	4.2565	3.5714	1.5876	1.7892
408114	MLPSCA11	Milpitas	2.0524	2.4082	2.6941	1.2463	1.2707
949806	MSVJCAAT	Mission Viejo	2.9620	3.9342	4.9885	2.5329	2.8349
209200	MDSTCA03	Modesto Kellog / South / Ceres	2.6011	1.1233	1.1636	1.7718	1.7366
209201	MDSTCA04	Modesto Kingswood / Curtis / Salida	1.7433	1.1571	1.0213	0.9503	1.0449
209199	MDSTCA02	Modesto Main	3.3530	5.3422	4.9561	1.9667	1.9267
209248	MDSTCA05	Modesto Tally	0.8250	1.1093	0.9406	0.4875	0.4628
661376	MOJVCA01	Mojave	3.2520	1.5864	1.1246	4.1411	2.7222
530529	MTAGCA11	Montague	1.6484	0.5272	0.3912	0.4996	0.5855
831115	MTRYCA01	Monterey	2.8569	4.5769	3.7398	1.4741	1.7639
805377	MRPKCA12	Moorpark	2.8038	3.9565	3.5864	1.5721	1.3877
925029	MORGCA12	Moraga	3.6618	4.9612	3.4340	2.0889	2.4390
831123	SLNSCA14	Moro	40.6250	32.2917	26.3566	15.6069	13.2911
805378	MRBACA11	Morro Bay	1.0264	1.3572	1.0811	0.8284	0.7524
650031	MSBHCA11	Moss Beach	5.7800	0.5725	0.5488	1.6492	1.4737
530474	MTSHCA12	Mount Shasta	2.7653	0.5170	0.4916	1.3944	1.2126
650032	MTVWCA11	Mountain View	2.0629	4.0010	2.9296	1.2776	1.2197
209203	MRPHCA11	Murphys	5.7692	11.2121	6.8992	1.6628	2.7446
707310	NAPACA01	Napa	2.5038	3.4756	3.0804	1.6246	1.6734
619754	NTCYCA11	National City - Highland	2.3005	3.1798	3.3824	2.3925	2.0058
530475	NVCYCA11	Nevada City	4.5992	2.5071	2.5187	2.9862	3.9356
916476	NWCSCA11	Newcastle	3.6695	3.5282	2.8665	2.6031	2.9266
661379	NHLLCA01	Newhall	2.2822	2.3201	2.5606	1.6851	1.6380
209204	NWMNCA12	Newman	1.9042	2.5597	2.2393	1.5899	1.4268
818646	NHWDCA01	NHWD / Lankershim	2.3470	1.7403	1.9180	1.8498	1.8585
818647	NHWDCA02	NHWD / Magnolia	2.5622	2.7333	3.0606	1.9798	1.8557
707311	NICECA11	Nice	6.0811	0.2256	0.2659	2.5575	2.9810
530477	NCLSCA12	Nicolaus	0.1745	0.0313	0.0255	0.3844	0.2717
760855	NILDCA11	Niland Main	20.8333	2.1242	2.0408	10.7143	7.8431
805380	NIPMCA11	Nipomo	1.8097	2.4081	1.5598	1.1364	0.9498
323633	LSANCA12	Normandy	2.6774	2.3831	2.1330	1.7374	1.7693
916537	NSCRCA12	North Natomas	2.2817	1.4811	1.5997	1.6099	1.5166
530480	NSJNCA11	North San Juan	1.9809	0.1446	0.1420	0.7699	0.9497
818648	NORGCA11	Northridge	2.2244	3.9555	4.5980	1.7238	1.8395
209205	OKDLCA11	Oakdale	1.9115	2.4524	1.9750	1.2485	1.1846
510038	OKLDCA11	Oakland 45th/Olympic(Central)	2.7221	3.0998	2.8006	1.6219	1.8113
510036	OKLDCA03	Oakland Franklin	2.7956	2.8234	2.8673	2.0841	2.1037
510039	OKLDCA12	Oakland Holly	2.5552	3.3368	3.0076	1.8318	1.6757
510037	OKLDCA04	Oakland Kellog(Fruitvale)	3.5450	3.1053	3.3498	2.1497	1.9662
510040	OKLDCA13	Oakland Mountain	2.3503	1.6089	1.1372	1.2902	1.3462
925041	OKLYCA11	Oakley	2.1495	1.4346	1.2539	1.3104	1.3557
805381	OKVWCA11	Oakview	230.0000	0.5561	0.6193	46.1111	43.3333
760758	OCSDCA11	Oceanside / Mission	2.5803	3.8398	5.1882	2.0919	2.1158
805382	OJAICA11	Ojai	1.7958	0.7915	0.6999	1.4818	1.5596
714759	ORNGCA11	Orange Chapman	2.1212	4.0373	3.9813	1.5084	1.5073
559206	ORCVCA11	Orange Cove	4.1809	1.1413	0.8390	4.3651	2.7344


WC	CLLI	WC Name	2015	2016	2017	2018	2019
714760	ORNGCA13	Orange Olive	3.1149	2.7907	2.4642	1.7836	1.7957
714761	ORNGCA14	Orange West	1.9802	1.1313	1.0812	1.9011	1.4980
916482	ORVACA11	Orangevale	1.3593	2.2251	1.5772	0.9819	0.8262
925042	ORNDCA11	Orinda	7.5758	2.2417	2.2017	5.3630	6.5292
530483	ORLDCA11	Orland	2.4120	3.0233	2.1376	1.3747	1.2753
559207	ORSICA11	Orosi	2.5978	1.6573	1.4906	2.1848	1.6514
530485	ORVLCA12	Oroville East	3.1934	3.0725	2.6370	1.7107	2.0015
530484	ORVLCA11	Oroville Main	3.5329	1.2110	1.0652	2.4675	2.2474
619853	OTMSCA11	Otay Mesa	1.4171	1.3908	1.8725	1.1168	1.4417
650043	PCFCCA11	Pacifica	3.5789	5.8721	5.1465	2.0769	2.2768
661384	PLDLCA01	Palmdale	2.7784	2.0134	1.8976	1.8495	1.7547
661412	PLDLCA11	Palmdale East / 47TH ST	1.7062	0.9479	0.8106	1.2329	1.1128
650045	PLALCA02	Palo Alto Main	2.1039	3.7707	3.1730	1.2444	1.2596
650046	PLALCA12	Palo Alto South	1.9355	1.0877	0.8073	0.9519	1.0208
530486	PRDSCA11	Paradise Main	4.6862	3.9327	3.8145	3.3839	3.7821
530487	PRDSCA12	Paradise Pines	3.1546	2.5362	2.2492	2.0531	3.9403
562649	PRMTCA01	Paramount	2.5005	3.9971	4.3580	1.7519	1.7915
415073	SNRFCA11	Parkway	2.0180	2.2373	1.7846	1.0486	1.0073
559208	PRLRCA11	Parlier	2.7151	1.4840	1.0309	3.0388	2.3638
626651	PSDNCA12	Pasadena / Lake	2.6626	3.1106	2.5662	1.6224	1.5540
626650	PSDNCA11	Pasadena / Mt Wilson / Green	2.2391	4.0005	3.6418	1.4636	1.4701
805385	PSRBCA01	Paso Robles	1.5224	0.1988	0.2249	0.9965	1.0820
760764	PALACA11	Pauma Valley	0.2402	0.1339	0.1376	0.1761	0.2281
951765	PDLYCA11	Pedley	1.7258	2.6613	2.9732	1.4123	1.2169
650051	PSCDCA11	Pescadero	4.0881	1.2416	1.0599	0.6138	0.9567
707314	PTLMCA01	Petaluma	2.3834	3.7748	2.9058	1.1691	1.3285
619766	PNVYCA11	Pine Valley	2.0276	2.2825	1.0973	1.0502	1.7043
805386	PIRUCA11	Piru	0.2051	0.0370	0.0406	0.0890	0.0717
805387	PSBHCA11	Pismo Beach	1.4130	0.5313	0.3971	1.1927	0.9783
925050	PSBGCA11	Pittsburg Bay Point / Willow	2.4943	1.7428	1.5208	1.7552	1.5841
925049	PSBGCA01	Pittsburg Main	2.5772	1.9811	2.0819	1.7105	1.8920
559210	PXLYCA11	Pixley	3.7398	4.9172	3.3790	2.2617	1.5734
714767	PLCNCA11	Placentia	2.4479	3.0900	3.3085	1.8143	1.6880
530489	PLVLCA11	Placerville - Main	2.7573	4.7975	3.8657	1.9983	2.6260
530490	PLVLCA12	Placerville - Niagara	6.2281	1.8660	1.7862	5.9361	5.9354
925083	PLTNCA13	Pleasanton Hacienda	0.2673	0.1468	0.1546	0.4234	0.5081
925047	PLTNCA12	Pleasanton Main/Hopyard	2.4403	5.2421	4.7065	1.6179	1.5277
209212	PLMOCA11	Plymouth	8.7838	0.4604	0.4210	1.4460	2.8180
559213	PTVLCA11	Porterville	3.0097	1.5229	1.1163	1.5269	1.5753
858768	POWYCA11	Poway Midland	2.4891	3.5182	3.9941	2.4676	2.6966
949808	RSMGCA11	R. S. Margarita	2.2222	3.0671	3.2490	1.5311	1.4322
760769	RAMNCA11	Ramona	2.6667	3.4748	2.9666	1.4621	1.5704
213632	LSANCA11	Rampart	1.8541	1.5944	1.5728	1.4369	1.4064
858770	RBRNCA11	Rancho Bernardo	1.6158	2.1339	2.4353	1.3479	1.1779
858854	RNPSCA11	Rancho Penasquitos	2.0823	1.3409	1.1506	1.3600	1.3607
619852	RNSDCA11	Rancho San Diego	1.7808	1.0781	1.4856	1.5524	1.4521
858771	RSFECA12	Rancho Santa Fe	23.3524	4.5949	3.6024	3.7313	3.4813
530494	RDBLCA01	Red Bluff	2.3137	0.6026	0.4967	1.4157	1.6559
530531	RDNGCA11	Redding Enterpr	2.3414	1.5550	1.9394	1.7234	1.7973
530495	RDNGCA02	Redding Main	4.6916	1.0138	1.2480	3.2771	3.2985
650053	RDCYCA01	Redwood City	2.7092	4.0360	3.3590	1.5504	1.6969
818652	RESDCA01	Reseda	3.2743	4.6313	4.7893	2.2188	2.2057
909773	RILTCA11	Rialto	3.3765	4.5837	5.1956	2.6305	2.2036
510013	ELSBCA11	Rich-Appian Way/El Sobrante	2.9821	2.9540	2.4601	2.0956	2.0963
213630	LSANCA09	Richmond	3.0935	1.2548	1.2942	2.4959	2.5136
510052	RCMDCA11	Richmond-SF	2.9454	4.8265	4.4597	2.0685	1.8405
707317	RIDECA11	Rio Dell	2.0440	0.1483	0.1158	2.1318	1.8672
916526	RILNCA12	Rio Linda	1.3330	2.2482	2.6865	1.4186	1.1775
209214	RVRBCA11	Riverbank	4.3754	5.8366	4.4955	2.1221	2.2440
559215	RVDLCA11	Riverdale	2.2388	0.5283	0.4376	1.3040	1.3499
951774	RVSDCA01	Riverside Orange	2.3274	3.3851	4.1231	1.8064	1.6657
916527	RCKLCA11	Rocklin	3.0819	0.8328	0.7448	2.0304	1.7897
707337	RTPKCA11	Rohnert Park	2.6204	1.4365	1.0106	1.5556	1.7553


WC	CLLI	WC Name	2015	2016	2017	2018	2019
661388	RSMDCA11	Rosamond	2.8031	3.4400	2.5546	2.3129	2.3736
626654	ROSMCA11	Rosemead	2.6221	2.8947	2.5955	1.7071	1.6180
949791	SJCPCA12	S. J. Capistrano	3.0789	0.9814	1.0672	2.4862	2.2891
916497	SCRMCA01	Sacramento Mn	1.6282	2.0316	1.9806	1.1096	1.1182
831119	SLNSCA01	Salinas Main	2.3416	1.9530	1.6484	1.2426	1.2977
650055	SNBUCA02	San Bruno	2.4826	3.5501	2.8250	1.4993	1.4886
650056	SNCRCA11	San Carlos	1.9810	2.4332	2.0072	0.9894	1.1370
949776	SNCLCA12	San Clemente	2.5595	0.9225	0.9500	1.5071	1.8212
626658	SNGBCA01	San Gabriel	3.9091	6.4411	5.5220	2.2278	2.4099
408134	SNJSCA18	San Jose Almaden Valley	3.3366	2.1961	1.8024	1.7064	1.7052
408131	SNJSCA13	San Jose Chynoweth	2.6411	2.3837	2.1983	1.6870	1.6877
408130	SNJSCA12	San Jose Dial Way	2.8417	2.8012	2.4469	1.8150	1.9472
408133	SNJSCA15	San Jose Evergreen / San Felipe	2.9145	1.2788	1.1708	1.5638	1.7159
408132	SNJSCA14	San Jose Foxworthy	2.1583	2.4088	2.2503	1.4529	1.4320
408145	SNJSCA21	San Jose Junction	2.3077	0.8607	1.0957	2.7646	2.4724
408128	SNJSCA02	San Jose Main	1.7280	3.3098	3.4344	1.3603	1.3437
408129	SNJSCA11	San Jose White Rd	2.2301	2.2993	2.2096	1.3973	1.3619
831127	SNJNCA11	San Juan Baustista	1.6213	0.1786	0.2342	0.4770	0.6346
510070	SNLNCA11	San Leandro	3.1534	6.2257	4.6092	1.8714	1.9491
805389	SNLOCA01	San Luis Obispo	1.2253	0.2968	0.2624	0.9991	0.6289
408136	SNMACA11	San Martin	2.5463	1.7519	2.5706	2.4760	1.9936
650071	SNMTCA11	San Mateo	2.6069	5.2134	4.0674	1.5633	1.5324
310659	SNPDCA01	San Pedro	2.8820	2.3220	2.3146	2.1046	1.9306
415072	SNRFCA01	San Rafael Main	4.4239	5.3547	4.5787	2.6124	2.8376
925074	SNRMCA11	San Ramon	2.4964	2.7778	2.7996	1.5604	1.5471
619794	SNYSCA12	San Ysidro	2.9188	3.1983	3.6867	2.5768	2.5829
714804	SNANCA12	Santa Ana West / SNAN Bolsa	2.3612	1.1992	1.2929	2.0373	2.0498
408137	SNTCCA11	Santa Clara Bellomy	2.2532	4.0698	3.6359	1.5120	1.5777
408143	SNTCCA01	Santa Clara Spacepark	1.3446	0.6894	0.5454	1.4609	1.3602
831125	SNCZCA01	Santa Cruz	4.0715	1.6450	1.3516	2.3187	1.8291
831126	SNCZCA11	Santa Cruz-Capitola	2.4063	2.9057	2.5324	1.3460	1.2154
707320	SNRSCA01	Santa Rosa Main	2.4572	3.4179	2.9725	1.4494	1.5022
619795	SANTCA01	Santee	1.6966	1.1663	1.4856	1.4902	1.3365
805391	SATCCA12	Saticoy	2.2473	1.1788	1.2190	1.4075	1.5135
661407	SAGSCA11	Saugus	2.3266	2.4076	2.3359	1.4700	1.4869
415075	SSLTCA11	Sausalito Larkspur	2.5241	1.3757	1.0707	1.5483	1.8574
831116	SCVYCA01	Scotts Valley	2.9004	1.4604	1.5540	2.0157	1.9706
916501	SCRMCA12	SCRM - Empire	2.7555	2.4997	2.4258	1.7558	1.7739
916502	SCRMCA13	SCRM - Fruitridge	3.2277	1.5817	1.5290	1.9900	1.9070
916499	SCRMCA03	SCRM - Garden	2.9052	3.0473	2.9795	1.8642	1.9413
916500	SCRMCA11	SCRM - Gladstone	2.3374	1.3464	1.5012	1.6032	1.6059
916498	SCRMCA02	SCRM - Ivanhoe	3.0881	3.9575	3.7875	2.1370	2.0807
831117	SESDCA11	Seaside	1.9195	2.6222	2.6975	1.3457	1.2294
707321	SBSTCA11	Sebastapol	3.4957	2.6683	2.3404	1.8460	1.8082
559217	SELMCA11	Selma	3.4281	5.9976	4.4218	1.8095	1.6882
415058	SNFCCA01	SF Bush Pine	1.5271	0.7291	0.7580	1.4132	1.1394
415064	SNFCCA13	SF Evergreen-9th Ave	2.9390	1.5586	1.3208	1.5425	1.5855
415068	SNFCCA21	SF Folsom	1.5208	1.2366	1.4405	1.2764	1.4521
415061	SNFCCA06	SF Juniper-Onondaga	2.8480	3.4349	2.7624	1.5635	1.5367
415067	SNFCCA12	SF Larkin-Steiner	2.5301	2.0752	1.9416	1.4558	1.4319
415059	SNFCCA04	SF Market-McCoppin	1.9946	2.4557	1.9608	1.1210	1.2558
415060	SNFCCA05	SF Mission-25th St	2.8447	2.7087	2.0563	1.4208	1.3918
415065	SNFCCA14	SF Montrose-19th	2.1495	3.1697	2.5157	1.1960	1.2757
415066	SNFCCA17	SF Third St.	2.4093	1.0762	1.0383	1.4436	1.4167
661392	SHFTCA11	Shafter	4.1543	1.2672	0.9342	2.2869	2.4161
818656	SHOKCA01	Sherman Oaks	3.0725	5.1219	4.9896	2.0650	2.0781
530504	SGSPCA11	Shingle Springs	2.2901	2.0358	1.7374	1.2276	1.3637
714797	SLVRCA11	Silverado	6.5217	1.8987	1.9928	0.4065	1.1111
805393	SIMICA11	Simi	2.4725	2.9614	2.6445	1.6514	1.6400
530507	SMAVCA11	Smartsville	3.8462	4.3333	2.5463	1.7544	2.0599
619781	SNDGCA06	SNDG 37th Street	1.3323	1.4175	1.9701	1.5649	1.5712
619777	SNDGCA01	SNDG C Street	1.5683	1.5749	2.3934	1.7776	1.7535
619782	SNDGCA11	SNDG College	2.0923	1.7409	1.9839	1.7841	1.8417


WC	CLLI	WC Name	2015	2016	2017	2018	2019
858779	SNDGCA03	SNDG Linda Vista	1.8707	2.2106	3.1126	1.8723	1.6690
619783	SNDGCA12	SNDG Market Street	3.2049	2.9336	3.3725	2.3639	2.3319
858786	SNDGCA16	SNDG Mira Mesa	1.6002	1.9150	2.2284	1.4595	1.4620
858785	SNDGCA15	SNDG Regents	1.3949	1.3518	2.3953	1.4798	1.6730
619780	SNDGCA05	SNDG Saipan	2.4439	1.7372	2.0261	2.2854	1.8186
619784	SNDGCA14	SNDG Tennyson	2.2091	1.8343	2.1536	1.9142	1.7767
619778	SNDGCA02	SNDG University	1.5072	1.6020	2.3370	1.5787	1.5837
530508	SDSPCA11	Soda Springs	37.5000	1.7266	3.4033	4.4365	9.9483
831118	SLDDCA11	Soledad	3.4680	1.7652	1.2225	2.1673	1.6066
661394	SLMNCA11	Solemint	2.2966	3.4209	3.6127	1.8436	1.6748
707323	SONMCA12	Sonoma	3.0610	3.9092	2.8299	1.5708	1.8091
209218	SNRACA13	Sonora	2.0522	0.6187	0.7356	1.3100	1.4331
626660	SPSDCA11	Sout Pasadena / Mission	2.4793	2.1003	1.9429	1.7823	1.5788
323655	SGATCA01	South Gate	2.4052	2.8999	2.6723	1.8663	1.5379
530512	STAHCA13	South Tahoe - Meyers/Apache	3.6731	5.9464	3.4216	1.7188	1.6529
530509	STAHCA01	South Tahoe - Sussex	3.1100	2.0174	1.7450	1.6134	1.5516
530511	STAHCA12	South Tahoe - Tamarack	7.8431	0.0825	0.5719	3.9683	2.0833
949810	IRVNCA12	Spectrum-Irvine	0.7246	0.3027	0.3092	0.8254	1.5374
707318	STHNCA11	St. Helena	2.9630	1.9918	1.7045	1.8182	2.1565
916541	RCKLCA01	Stanford Ranch	2.5596	2.9899	2.2320	1.4133	1.3692
415076	STBHCA11	Stinson Beach	6.2706	2.2135	1.2917	1.4607	1.2149
209222	SKTNCA12	Stockton Ashley	0.5143	0.1946	0.1593	0.5387	0.4650
209221	SKTNCA11	Stockton Granite	3.3775	3.5187	3.2733	2.0942	2.1362
209220	SKTNCA01	Stockton Main	2.9568	3.5500	3.8666	1.9903	2.0435
209223	SKTNCA14	Stockton Redwood	2.3226	2.2181	1.9909	1.2119	1.4051
707324	SUISCA11	Suisun City	5.5000	2.1404	2.5337	10.3801	5.6122
209225	STCKCA11	Sutter Creek	2.0871	2.0013	1.7352	0.9737	1.2674
530514	THCYCA01	Tahoe City	3.0303	0.4953	0.4024	0.8667	1.4039
661395	THCHCA01	Techachapi	1.4589	2.1960	1.8015	0.9031	0.8628
805396	TMTNCA11	Templeton	1.8217	3.1046	2.0337	1.0069	0.9402
209227	THTNCA11	Thornton	3.6667	1.5625	1.1715	2.7778	2.0261
415005	TBRNCA11	Tiburon	1.4701	2.6081	2.4987	0.8318	0.8884
559229	TPTNCA11	Tipton	6.5041	1.8886	2.1036	2.6797	2.8287
310661	TRNCCA11	Torrance	2.5104	1.8633	1.6222	1.4868	1.4610
209230	TRACCA11	Tracy	2.3140	4.3989	4.2744	1.6779	1.6716
530515	TRUCCA11	Truckee	3.0571	4.3438	2.9014	0.6920	0.7364
559231	TULRCA11	Tulare	2.4953	2.8318	2.7709	1.5512	1.5502
209232	TRLCCA11	Turlock	2.1860	1.9971	1.8523	1.4102	1.4642
714798	TUSTCA11	Tustin 11	2.7458	3.3345	2.9100	1.6217	1.6672
209233	TWHRCA11	Twain Harte	4.9338	0.4140	0.4751	2.2499	2.7339
707328	UKIHCA01	Ukiah Main	2.8616	3.5404	3.1393	2.2047	2.0654
213627	LSANCA06	Union	2.2226	1.0791	1.1792	1.7734	2.0532
510078	UNCYCA11	Union City	3.0475	5.5085	5.0890	2.0457	2.0769
707329	UPLKCA11	Upper Lake	4.2181	0.2363	0.1349	1.9608	1.4610
707330	VCVLCA12	Vacaville	2.3166	4.0782	3.9238	1.4684	1.5585
707331	VLLJCA01	Vallejo	2.5969	3.5738	3.3715	1.6177	1.5726
760799	VLCTCA11	Valley Center	3.3358	1.1158	1.1587	2.0823	1.8296
818662	VNNYCA02	Van Nuys	2.5276	2.0072	2.1176	1.8926	1.9086
805400	VNTRCA02	Ventura / Fir	2.5298	0.5776	0.5502	1.6618	1.5847
805399	VNTRCA11	Ventura Main / Montalvo	2.6245	2.6698	2.3964	1.7538	1.5310
559235	VISLCA11	Visalia Main	2.3969	2.3205	2.2802	1.5424	1.5087
760800	VISTCA12	Vista	1.7486	1.7201	2.3789	1.6657	1.6439
916479	NSCRCA11	Wabash	2.2147	1.8029	1.8912	1.7191	1.6523
209236	WLLCCA11	Wallace	2.6749	5.2846	4.3956	0.5618	1.7276
925079	WNCKCA11	Walnut Creek	2.2504	4.2465	3.2666	1.3546	1.4139
661402	WASCCA01	Wasco	1.8137	1.3567	1.1015	1.5577	1.3277
209237	WTFRCA11	Waterford	2.6649	0.7151	0.5673	2.3327	1.7166
831141	WTVLCA01	Watsonville	2.1524	3.9264	3.1558	1.1442	1.1165
530518	WEEDCA01	Weed	2.4390	1.3759	1.4008	1.0391	1.4572
530520	WTLDCA12	Wheatland	0.6233	0.7850	0.3184	0.3911	0.3865
530535	GRVYCA12	Wildwood	3.3589	4.5066	3.1382	1.4468	1.7400
707334	WLTSCA12	Willits	2.1318	0.3994	0.2774	1.2572	1.8639
530521	WLWSCA11	Willows	2.8238	2.8944	1.5930	1.6719	1.5758


| WC | CLLI | WC Name | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 9}$ |  |
| :---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 310664 | WLMGCA01 | Wilmington | 3.0155 | 5.5724 | 5.4624 | 1.8096 |
| 707335 | WNDSCA11 | Windsor | 3.0382 | 1.1391 | 0.8487 | 1.7639 |
| 530522 | WNTRCA11 | Winters | 10.8527 | 8.1317 | 5.4688 | 6.3079 |
| 951775 | RVSDCA11 | Woodcrest | 2.9805 | 1.7808 | 1.3750 | 1.7040 |
| 559239 | WDLKCA11 | Woodlake | 4.7000 | 0.6897 | 0.6582 | 3.7704 |
| 530523 | WDLDCA11 | Woodland | 2.5990 | 3.9826 | 3.3354 | 1.5339 |
| 714802 | YRLNCA11 | Yorba Linda | 2.3013 | 4.2539 | 3.3531 | 1.3552 |
| 707336 | YNVLCA11 | Yountville | 3.1308 | 0.1758 | 0.1832 | 1.6534 |
| 530524 | YREKCA11 | Yreka | 1.8430 | 3.2062 | 1.8905 | 1.6142 |
| 530525 | YBCYCA01 | Yuba City / Marysville | 2.1336 | 1.4592 | 1.4768 |  |

## VoIP service quality metrics: Frontier California

On the day it took over control of the California ILEC from Verizon, Frontier California had VoIP lines in service. By the end of December 2019, that number had decreased to , a roughly $50 \%$ erosion in the number of VoIP subscribers between the April 1, 2016 acquisition date and December 31, 2019. Not all of Frontier's VoIP customers were being served out of FiOS-equipped locations, ${ }^{104}$ although the precise breakdown has not been provided. As of the acquisition date (April 1, 2016), Frontier was providing FiOS services in approximately 75 of its 201 reporting units (which, as discussed in Chapter 4F above, in some cases represented administrative consolidations of two or more individual wire centers) although there were fewer than 10 VoIP lines in five of these; by the end of 2019, the number of reporting units where FiOS was being provided had decreased to 68. Frontier states that, as of October 2018, it was offering FiOS to about homes passed out of 118 of its total 270 wire centers. ${ }^{105}$ However, as of the end of 2018, Frontier states that it was providing FiOS service to a total of $\square$ residential and business customers in only 76 of its wire centers. ${ }^{106}$ By the end of 2019, Frontier had only about residential and business FiOS customers, a loss of more than over the previous year. ${ }^{107}$ Frontier's VoIP services were being targeted primarily at residential subscribers; as of the end of December 2019, only about $\square$ business customers were taking VoIP services from Frontier. ${ }^{108}$


Notably, Frontier experienced a far greater drop-off in legacy circuit-switched access lines over that same period; On April 1, 2016, the company had 1,201,218 POTS access lines in service; by the end of 2019 , that number dropped by a slightly larger percentage -- $52.3 \%$-- to 572,975 access lines, suggesting that the availability of FTTP-based FiOS has done little to help Frontier maintain its customer base overall. ${ }^{109}$ Table 14.11 below compares Frontier's POTS and
104. Frontier response to CD DR 13-F-3, "Att. 13-F-3 VoIP Line Count (CONFIDENTIAL).xlsx"
105. Frontier response to CD Data Request 15-F-06. Frontier's response to $15-\mathrm{F}-06$ (b) lists a total of 84 wire centers. However, 8 of these have either no FiOS customers at all, or only a low single-digit number of them.
106. Id.
107. Id.
108. Frontier California Response to CD Data Request 11-F-23, FCC Form 477 submissions June 30, 2016 through December 31, 2019,
109. Notably, in its Response to CD DR 11-F-3, Frontier identified 239 out of its total of 278 wire centers (as distinct from "reporting units") as being "Broadband Enabled." See "Attachment 11-F-3-Confidential Central Office Data.xlsx". In its response to CD DR 11-F-4, Frontier has provided a total of 139,335 VoIP trouble ticket

VoIP markets over the 2016-2019 period based upon the company's FCC Form 477 submissions, which are provided at 6-month intervals:

Frontier suffered large losses both of POTS and VoIP access lines since assuming control of the company on April 1, 2016 with POTS losses slightly higher, suggesting that the availability of FTTP-based FiOS has done little to help Frontier maintain its customer base overall.

Table 14.11
FRONTIER CALIFORNIA POTS AND VoIP LINES IN SERVICE 2016-2019

		VoIP			POTS			Total	
	Total	Consumer	Business	Total	Consumer	Business	Total	Consumer	Business
2016-06-30				1,361,599	632,803	728,796			
2016-12-31				1,089,685	513,784	575,901			
2017-06-30				987,812	446,350	541,462			
2017-12-31				905,236	397,378	507,858			
2018-06-30				835,732	355,404	480,328			
2018-12-31				733,922	324,528	409,394			
2019-06-30				681,546	293,126	388,420			
2019-12-31				635,325	265,520	369,805			
Source: Frontier California Response to CD Data Request 11-F-23, FCC Form 477 submissions.									

Frontier has not provided a technology breakdown with respect to its VoIP services. In response to CD DR 11-F-3, Frontier identified a total of 278 central offices as being "broadband enabled," and there were 274 different Frontier California wire centers identified in the 139,335 VoIP-related trouble reports that the company processed between July 2016 and December 2019. All else equal, one would expect that both the total number of trouble tickets and the number of out-of-service trouble tickets would experience a corresponding reduction over that same period. We don't have trouble ticket reports for the April-June 2016 period and the trouble report data for July 2016 appears to be incomplete. Between April 1 and July 31, 2016 alone, Frontier VoIP subscribership dropped by $11.63 \%$, from . Because we do not have complete trouble report counts prior to August 2016, this analysis will start with the average

[^40]number of VoIP lines in service for August 2016 and continue for the months thereafter. ${ }^{110}$ Table 14.12 below summarizes the results of this analysis:

By the end of 2019, Frontier California's average monthly VoIP lines in service had decreased by Total trouble reports experienced a much greater decrease, to $40.69 \%$ of the August 2016 number, indicating improvement overall. However, as far as out-of-service trouble conditions, those actually increased by $54.79 \%$ despite a $41.74 \%$ decrease in the number of VoIP lines in service.
110. In order to compare trouble report counts, which arise throughout the month, to VoIP subscriptions in effect during that month, it is necessary to use the average number of VoIP subscriptions rather than the end-of-month figures. We calculate the average subscriptions by taking the average of the VoIP lines in service for the last day of the prior month and the last day of the current month.

Table 14.12FRONTIER CALIFORNIAVoIP LINES IN SERVICE AND VoIP TROUBLE REPORTS2016-2019							
End of Month	End-of-Month VoIP Lines in Service	Average VolP Lines in Service for Month	Pct of August 2016	Total VolP Trouble Reports for Month	Pct of August 2016	Out-of Service VoIP Trouble Reports for Month	Pct of August 2016
2016-03							
2016-04							
2016-05							
2016-06							
2016-07							
2016-08				1,132		162	
2016-09			100.00\%	6,200	100.00\%	825	100.00\%
2016-10			97.10\%	6,084	98.13\%	753	91.27\%
2016-11			94.27\%	5,261	84.85\%	676	81.94\%
2016-12			91.49\%	6,281	101.31\%	628	76.12\%
2017-01			88.86\%	7,190	115.97\%	769	93.21\%
2017-02			86.63\%	5,786	93.32\%	666	80.73\%
2017-03			84.40\%	5,430	87.58\%	592	71.76\%
2017-04			82.57\%	3,611	58.24\%	636	77.09\%
2017-05			80.97\%	3,748	60.45\%	1,114	135.03\%
2017-06			79.52\%	3,668	59.16\%	998	120.97\%
2017-07			78.48\%	3,547	57.21\%	1,075	130.30\%
2017-08			77.74\%	4,000	64.52\%	1,094	132.61\%
2017-09			77.27\%	3,089	49.82\%	1,023	124.00\%
2017-10			76.90\%	4,224	68.13\%	1,072	129.94\%
2017-11			76.41\%	3,047	49.15\%	1,036	125.58\%
2017-12			75.95\%	3,676	59.29\%	1,100	133.33\%
2018-01			75.40\%	3,936	63.48\%	1,106	134.06\%
2018-02			74.74\%	2,636	42.52\%	746	90.42\%
2018-03			74.32\%	2,853	46.02\%	963	116.73\%
2018-04			73.91\%	3,038	49.00\%	981	118.91\%
2018-05			73.37\%	2,373	38.27\%	987	119.64\%
2018-06			72.95\%	2,382	38.42\%	1,229	148.97\%
2018-07			72.49\%	3,739	60.31\%	1,969	238.67\%
2018-08			72.05\%	2,552	41.16\%	1,292	156.61\%
2018-09			71.78\%	3,379	54.50\%	2,171	263.15\%
2018-10			71.46\%	2,585	41.69\%	1,287	156.00\%
2018-11			70.92\%	2,373	38.27\%	1,256	152.24\%
2018-12			70.16\%	2,377	38.34\%	1,152	139.64\%
2019-01			69.27\%	3,171	51.15\%	1,433	173.70\%
2019-02			68.22\%	2,921	47.11\%	1,332	161.45\%
2019-03			67.05\%	2,778	44.81\%	1,351	163.76\%
2019-04			65.86\%	2,060	33.23\%	975	118.18\%
2019-05			64.75\%	2,112	34.06\%	1,001	121.33\%
2019-06			63.89\%	1,898	30.61\%	961	116.48\%
2019-07			63.14\%	2,416	38.97\%	1,350	163.64\%
2019-08			62.42\%	2,377	38.34\%	1,303	157.94\%
2019-09			61.70\%	2,070	33.39\%	1,090	132.12\%
2019-10			60.91\%	2,394	38.61\%	1,294	156.85\%
2019-11			60.06\%	2,404	38.77\%	1,370	166.06\%
2019-12			59.26\%	2,523	40.69\%	1,277	154.79\%

Over the 42-month period from July 2016 through December 2019, Prontier created a total of 139,324 VoIP service trouble tickets, of which less than one-third, 44,095, were associated with out-of-service conditions. ${ }^{111}$ Each of Frontier's trouble ticket records contain an indication as to the "cause" of the service outage. Combining the identified "cause" with the type of plant involved, there are roughly 300 such identifiers. Table 14.13 below details the number of out-ofservice trouble reports associated with each of the top twenty Frontier "cause" descriptions, separately for those instances that did not involve a service outage and for those that did. These are presented in order of the highest to lowest instances of each such Cause.

Table 14.13   FRONTIER CALIFORNIA   VoIP SERVICE OUTAGE CAUSE INDICATIONS				
Cause	No service outage	Service outage	Total	$\begin{aligned} & \text { Percent of } \\ & \text { total } \end{aligned}$
	23,035	9,932	32,967	23.66\%
	10,093	6,344	16,437	11.80\%
	6,418	2,704	9,122	6.55\%
	5,179	3,077	8,256	5.93\%
	6,263	1,905	8,168	5.86\%
	3,883	1,452	5,335	3.83\%
	3,479	1,636	5,115	3.67\%
	4,342	752	5,094	3.66\%
	3,269	982	4,251	3.05\%
	2,372	715	3,087	2.22\%
	1,858	1,041	2,899	2.08\%
	2,129	658	2,787	2.00\%
	2,036	644	2,680	1.92\%
	1,385	927	2,312	1.66\%
	1,216	1,059	2,275	1.63\%
	1,104	938	2,042	1.47\%
	938	927	1,865	1.34\%
	1,373	489	1,862	1.34\%
	1,177	583	1,760	1.26\%
	1,214	414	1,628	1.17\%
TOTAL				

We have attempted to classify each of the nearly 300 cause/plant type designations into one of thirteen (13) categories so as to facilitate identification of the principal types of VoIP service
111. Frontier Response to CD Data Request 11-F-25. Frontier did not provide any VoIP-related trouble ricket records for Sptil, May or June 2016. Its data did include eleven (11) trouble ticket records pre-dating its takeover of the California ILEC dating back to October 2011. We have ignored these records for purposes of our analysis.
outages that are being experienced by customers. Table 14.14 below summarizes the out-ofservice trouble ticket counts for each of these categories:

Table 14.14   FRONTIER CALIFORNIA PRINCIPAL CATEGORIES OF VoIP OUT-OF-SERVICE TROUBLE REPORTS				
Cause	No service outage	Service outage	Total	Percent of total
Determined to not be out-ofservice or cleared	32,853	13,790	46,643	33.48\%
Frontier-provided customer premises equipment	27,171	16,007	43,178	30.99\%
Frontier VoIP or FiOS server/network	11,654	4,884	16,538	11.87\%
Subscriber distribution outside plant	7,783	3,248	11,031	7.92\%
Administrative	6,817	1,777	8,594	6.17\%
Customer-provided equipment \& Inside Wire Maintenance	4,744	2,118	6,862	4.93\%
Frontier employee error	938	927	1,865	1.34\%
Customer education	1,231	424	1,655	1.19\%
Interexchange or connecting carrier issue	1,009	618	1,627	1.17\%
Cause Not Specified	733	174	907	0.65\%
Other	210	105	315	0.23\%
Employee caused	86	23	109	0.08\%
Total	95,229	44,095	139,324	100.00\%

While our classifications may not be precise due to limitations in the descriptions provided by Frontier, it is apparent that the principal causes of VoIP-related trouble reports and, in particular, VoIP service outages involve Frontier equipment located on the customer's premises ( $30.99 \%$ ), VoIP server or network issues ( $11.87 \%$ ), outside plant ( $7.92 \%$ ) and a variety of administrative issues $(6.17 \%)$, some of which may be customer-driven (e.g., non-payment).

As noted, not all out-of-service trouble conditions arise due to Frontier California plant failures. Out of the 44,095 VoIP out-of-service reports provided for the period from April 2016 through December 2019, only 25,089 , or about $56.9 \%$, appear to be the result of Frontier plant or equipment issues or employee actions. ${ }^{112}$ Table 14.15 below compares the number of service outage reports associated with such Frontier California plant failures over the same August 2016 through December 2019 period with corresponding numbers of VoIP lines in service:
112. The following trouble report categories fall into this group: Frontier-provided customer premises equipment; Frontier VoIP or FiOS server/network; Subscriber distribution outside plant; Frontier Employee Error; and Employee Caused.


Table 14.15   FRONTIER CALIFORNIA   OUT-OF-SERVICE CONDITIONS DUE TO PLANT AND EQUIPMENT FAILURES 2016-2019							
Service Outage Cause Category							
End of Month	Frontier Equipment	VoIP/FiOS   Network / Server	Subscriber Distribution Outside Plant	Frontier employee error	Frontier employee caused	Total	Average VolP Lines in Service
2016-03							
2016-04							
2016-05							
2016-06							
2016-07							
2016-08	54	23	7	2		86	
2016-09	142	94	31	6		273	
2016-10	233	104	40	8		385	
2016-11	190	105	30	2		327	
2016-12	201	91	48	7		347	
2017-01	210	95	76	10		391	
2017-02	203	75	56	13		347	
2017-03	176	78	34	10		298	
2017-04	231	84	39	6		360	
2017-05	521	155	85	20		781	
2017-06	437	139	70	27		673	
2017-07	476	154	91	17		738	
2017-08	449	129	89	19		686	
2017-09	441	109	85	25		660	
2017-10	433	128	77	19		657	
2017-11	423	186	60	29		698	
2017-12	457	115	83	30		685	
2018-01	542	103	91	44		780	
2018-02	333	75	79	33		520	
2018-03	382	124	108	33		647	
2018-04	392	149	84	43		668	
2018-05	405	125	69	27		626	
2018-06	463	137	94	21		715	
2018-07	662	274	114	30	1	1081	
2018-08	503	134	113	38	2	790	
2018-09	336	103	66	24	13	542	
2018-10	471	149	129	20	2	771	
2018-11	375	111	78	34	1	599	
2018-12	477	87	97	25		686	
2019-01	493	127	158	31	1	810	
2019-02	481	118	150	19	1	769	
2019-03	544	103	108	23		778	
2019-04	390	99	69	42	1	601	
2019-05	371	119	87	24		601	
2019-06	367	77	77	19		540	
2019-07	358	91	79	20		548	
2019-08	540	123	65	32		760	
2019-09	404	147	72	22	1	646	
2019-10	490	156	63	28		737	
2019-11	506	166	80	28		780	
2019-12	445	123	117	17		702	
Totals	16,007	4,884	3,248	927	23	25,089	

When breaking this analysis down to such a granular level, it is difficult to define a "base period" as we had done for Table 14.12 because there is considerable month-to-month variation. That said, it is clear that while the number of VoIP lines has fallen precipitously over the period, the month-to-month frequency of service outages caused by each of these categories of failures seems to have actually increased.

## Conclusion

The massive and rapid migration of most California residential customers away from legacy circuit-switched (POTS) services over the past decade is clearly attributable to the increasing availability of competitive as well as technological alternatives to these primarily ILEC-provided services. Many customers have "cut the cord" and have replaced wireline services with wireless; for those who wanted to retain wireline services, VoIP is the principal alternative. Both AT\&T California and Frontier California offer individual line VoIP services targeted at the residential and small business market, but demand for ILEC-provided VoIP has been on the decline for several years. Cable TV providers, mainly Comcast and Charter in California, provide VoIPbased telephone service to their residential customers as part of bundled packages that also include broadband Internet access and video content, but typically do not offer voice telephone service on a stand-alone basis. Although there does not appear to be any compelling reason for the Commission to regulate VoIP rates for the majority of customers, there are nevertheless several regulatory challenges that should not be lightly dismissed.

VoIP service is dependent upon locally-provided power, battery backup, and complex customer premises equipment that is not generally required for legacy circuit-switched services. The seemingly higher incidence of VoIP service outages vis-à-vis POTS could well be the result of customer premises conditions that are unique to VoIP. These conditions arise both for ILECand cable-provided VoIP services. For customers who have "cut the cord" and rely upon some type of over-the-top landline service and/or wireless, access to reliable location reporting for 911 emergency purposes is still far from achieving the accuracy available with fixed wireline services. Finally, the so-called "digital divide" -- an issue whose importance has increased as a result of the COVID-19 crisis - raises the potential for the loss of high quality wireline voice services in rural and low-income populations. Although the Commission has created Lifeline programs that involve some (but not all) wireless providers, for wireline services the focus has traditionally been on ILEC circuit-switched offerings. As these services are phased out, new Lifeline initiatives that include all major VoIP providers (ILECs and cable MSOs) will need to be formulated. With the sunset of $\S 710$ that went into effect as of the beginning of 2020, a comprehensive regulatory approach that embraces all providers of VoIP type services should clearly be a top priority.

## 15 CPUC CONSUMER AFFAIRS BRANCH COMPLAINTS

## Principal observations and takeaways

- CAB collects geo-coded customer location information, but this is not consistent with the customer of record/account data that is contained in the ILECs' trouble report records, such as the customer's account or billing telephone number, serving wire center, or other location-specific information. Consequently, CAB complaint records cannot be directly linked to or correlated with carrier trouble tickets because CAB does not collect detailed customer account or location data.
- Less than a quarter of the total complaints received by CAB involved service outages and other service-related problems.
- The vast majority VoIP-related complaints received by CAB address issues other than VoIP service quality, such as billing disputes and other customer service issues.
- Although the absolute number of service-related complaints received by CAB is extremely small when compared with the number of complaints made directly with carriers, on a relative scale more than four times as many complaints involve legacy services provided by Frontier than those furnished by AT\&T.
- CAB should undertake to collect customer account and location data as part of all service-related complaints.


## CPUC CONSUMER AFFAIRS BRANCH COMPLAINTS

## TABLE OF CONTENTS

Introduction ..... 699
Types and quantities of consumer complaints received by CAB ..... 700
VoIP Services ..... 706
CAB complaints vs. carrier trouble reports for legacy services ..... 707
Summary ..... 710

## Tables

Table 15.1: CPUC Consumer Affairs Branch - Types of Consumer Complaints Received Relating to AT\&T California - 2018-2019701
Table 15.2: $\quad$ CPUC Consumer Affairs Branch - Types of Consumer Complaints ReceivedRelating to Frontier California - 2018-2019 ..... 703
Table 15.3: CPUC Consumer Affairs Branch Principal Categories of Consumer Complaints 2018-2019 ..... 705
Table 15.4: VoIP and Legacy Services - Complaints, Trouble Reports and Subscription Counts, 2018-2019 ..... 706
Table 15.5: AT\&T California - Comparison of Carrier Out-of-Service Trouble Reportsvs. Service Quality-Related Complaints Received by CPUC ConsumerAffairs Branch - 2018-2019708
Table 15.6: Frontier California - Comparison of Carrier Out-of-Service Trouble Reports vs. Service Quality-Related Complaints Received by CPUC Consumer Affairs Branch - 2018-2019 ..... 709

## Introduction

The mission of the CPUC's Consumer Affairs Branch ("CAB") is to assist consumers of public utility services address problems that may arise from time to time in connection with their service, billing issues, and/or other relationships with the utility. The CAB describes its role as follows:

The California Public Utilities Commission (CPUC) regulates privately owned California utilities that provide energy, water, and telecommunications services. If you have a question or complaint concerning one of these utility providers, help is available through the Consumer Affairs Branch (CAB).

CAB's team of representatives is ready to assist consumers with billing and service matters with regulated utilities. Through dedicated specialists, CAB assists consumers in resolving application denials (appeals) for the California LifeLine program participation. ... ${ }^{113}$

Within the overall scope of our work on Phase 1, ETI examined Consumer Affairs Branch complaint data with an attempt to correlate it with the more direct GO 133-C/D Trouble Report records submitted by the carriers. We determined that CAB complaint records do not typically include the complainant's billing telephone number (BTN) or location, making it impossible to link individual consumer complaints as submitted to CAB with Trouble Ticket records maintained by the carriers and furnished to us for purposes of this Study. For Phase 2, ETI has been tasked with examining (1) whether wire centers with a high number of consumer complaints have worse service quality metrics than the statewide average; and (2) the breakdown of complaints of VoIP versus traditional telephone service.

CAB handles both informal complaints as well as formal complaints that are ultimately adjudicated by the CPUC. Our examination was, however, limited to informal complaints. CAB collects geo-coded customer location information, but this is not consistent with the customer of record/account data that is contained in the ILECs' trouble report records, such as the customer's account or billing telephone number, serving wire center, or other location-specific information. Because CAB complaint records do not typically include the complainant's billing telephone number (BTN), it is usually not possible to link individual consumer complaints as submitted to CAB with Trouble Ticket records maintained by the carriers and furnished to us for purposes of this Study. As a result, we are able to address only limited aspects of issue (1). However, we have reviewed records of all complaints received by CAB pertaining to AT\&T California (U-1001) and Frontier California (U-1002) over the 24 month period from January 2018 through December 2019, and are able to provide an overall assessment of the relationship between service outages as reported to the carriers vs. service-related complaints submitted to CAB.

[^41]
#### Abstract

CAB collects geo-coded customer location information, but this is not consistent with the customer of record/account data that is contained in the ILECs' trouble report records, such as the customer's account or billing telephone number, serving wire center, or other location-specific information. Consequently, CAB complaint records cannot be directly linked to or correlated with carrier trouble tickets because CAB does not collect detailed customer account or location data.


## Types and quantities of consumer complaints received by CAB

Over the Phase 2 2018-2019 study period, CAB received a total of 5,729 Complaints pertaining to AT\&T California and 2,925 Complaints pertaining to Frontier California. In its complaint data records, CAB identifies approximately 75 principal types of complaints by their subject. Tables 15.1 and 15.2 below summarize these, and provide the quantities received in each subject category, for AT\&T California and Frontier California, respectively.

To support our analysis, we have associated each of the CAB complaint types with one of six (6) principal complaint categories, as follows:

Service Quality issue<br>Billing / Commercial Dispute<br>Customer service issue<br>VoIP<br>Service quality issues<br>Other issues (e.g., billing, customer service)<br>Non-phone issue (Cable, Internet)<br>Unknown

These principal complaint category assignments are also shown on Tables 15.1 and 15.2.

Table 15.1

## CPUC CONSUMER AFFAIRS BRANCH TYPES OF CONSUMER COMPLAINTS RECEIVED RELATING TO AT\&T CALIFORNIA 2018-2019

Complaint type	Category	Count	Pct of Total
Abusive Marketing	Customer service	112	1.95\%
Bill Adjustment	Billing / Commercial	118	2.06\%
Bill Format	Billing / Commercial	12	0.21\%
Bill Not Received	Billing / Commercial	72	1.26\%
Bundled Services	Customer service	62	1.08\%
Call Quality	Service issue	144	2.51\%
Commission Policy/Rules	Customer service	22	0.38\%
Cramming/3rd Party Billing	Billing / Commercial	33	0.58\%
Cramming/3rd Party Billing	Billing / Commercial	3	0.05\%
Dead Zones/Dropped Calls	Service issue	6	0.10\%
Deaf and Disabled Programs (DDTP)	Customer service	2	0.03\%
Delayed Orders/Missed Appointments	Service issue	293	5.11\%
Deposits	Billing / Commercial	1	0.02\%
Disconnected In Error	Customer service	62	1.08\%
Disconnection Non Payment	Billing / Commercial	136	2.37\%
Disputed Customer of Record	Billing / Commercial	28	0.49\%
Early Termination Fee - ETF	Billing / Commercial	28	0.49\%
Fraud	Billing / Commercial	,	0.03\%
Health	Customer service	1	0.02\%
High Bill	Billing / Commercial	666	11.63\%
Late Payment Charge - LPC	Billing / Commercial	56	0.98\%
LL Consumer Did Not Return Form	Customer service	5	0.09\%
LL Documents Not Provided/Does Not Meet Guidelines	Customer service	3	0.05\%
LL Form Complexity	Customer service	1	0.02\%
LL IDV Identity Verification	Billing / Commercial	14	0.24\%
LL No Carrier Authority	Customer service	1	0.02\%
LL Nondeliverable	Customer service	2	0.03\%
LL Policy/Practices	Customer service	6	0.10\%
LL SSN/DOB/TRIBAL ID Not Provided	Customer service	1	0.02\%
LLB Address Error	Billing / Commercial	29	0.51\%
LLB Application Request	Billing / Commercial	557	9.72\%
LLB Approved for Discount	Billing / Commercial	244	4.26\%
LLB Discount Switched to Other Carrier	Billing / Commercial	73	1.27\%
LLB Federal Program/Equipment	Customer service	2	0.03\%
Low Income/Special Needs	Customer service	1	0.02\%
NJ Cable/Satellite TV	Non-phone issue	278	4.85\%
NJ Claims for Damages	Customer service	21	0.37\%
NJ Company Practice	Customer service	65	1.13\%
NJ Customer Service	Customer service	70	1.22\%
NJ Easements/Right of Way	Customer service	24	0.42\%
NJ Equipment	Service issue	40	0.70\%


Complaint type	Category	Count	Pct of Total
NJ Inability to Serve	Service issue	14	$0.24 \%$
NJ Inside Wiring	Non-phone issue	3	$0.05 \%$
NJ Internet Billing	Non-phone issue	150	$2.62 \%$
NJ Internet Service/Equipment	Non-phone issue	318	$5.55 \%$
NJ Landlord/Tenant Issues	Billing / Commercial	2	$0.03 \%$
NJ Not Listed	Customer service	102	$1.78 \%$
NJ Out of State Consumer	Customer service	8	$0.14 \%$
NJ Property Restoration/Debris Removal	Service issue	$0.12 \%$	
NJ Rebates/Promotions	Billing / Commercial	7	$0.44 \%$
NJ Surcharges/Taxes	Billing / Commercial	25	$0.47 \%$
NJ VOIP (Voice Over Internet Protocol)	VoIP	27	$5.55 \%$
NJ Yellow Page Directory	Non-phone issue	318	$0.03 \%$
Number Portability - Wireless or Landline	Customer service	2	$0.82 \%$
Numbering Plan Area - Area Code Changes	Customer service	47	$0.07 \%$
Obscene/Threatening/Harassing Calls	Customer service	4	$0.54 \%$
Operator Services	Service issue	31	$0.03 \%$
Other Charges	Billing / Commercial	2	$5.85 \%$
Out of Service Credit - OOS	Billing / Commercial	13	$0.23 \%$
Outage	Service issue	623	$10.87 \%$
Payment Arrangements	Billing / Commercial	60	$1.05 \%$
Payment Error	Billing / Commercial	61	$1.06 \%$
Premise Visit Charges	Billing / Commercial	4	$0.07 \%$
Rate Design	Billing / Commercial	4	$0.07 \%$
Rate Protest	Billing / Commercial	1	$0.02 \%$
Refusal To Serve	Customer service	55	$0.96 \%$
Robo Calls/ADAD	Customer service	44	$0.77 \%$
Safety	Service issue	79	$1.38 \%$
Slamming	Billing / Commercial	30	$0.52 \%$
Toll Dispute	Billing / Commercial	21	$0.37 \%$
Unknown	Unknown	32	$0.56 \%$
VoIP (Voice over Internet Protocol)	VolP	$0.02 \%$	
Whistleblower	Customer service	1	$0.02 \%$
White Page Listings - Telephone Directory	Non-phone issue	4	$0.07 \%$
Wildfires	Service issue	$0.09 \%$	
TOTAL		5729	$100.00 \%$


Table 15.2CPUC CONSUMER AFFAIRS BRANCHTYPES OF CONSUMER COMPLAINTS RECEIVEDRELATING TO FRONTIER CALIFORNIA$2018-2019$			
Complaint type	Category	Count	Pct of Total
Abusive Marketing	Customer service	73	2.50\%
Bill Adjustment	Billing / Commercial	99	3.38\%
Bill Format	Billing / Commercial	3	0.10\%
Bill Not Received	Billing / Commercial	20	0.68\%
Bundled Services	Customer service	33	1.13\%
Call Quality	Service issue	85	2.91\%
Commission Policy/Rules	Customer service	13	0.44\%
Cramming/3rd Party Billing	Billing / Commercial	27	0.92\%
Cramming/3rd Party Billing	Billing / Commercial	1	0.03\%
Dead Zones/Dropped Calls	Service issue	5	0.17\%
Deaf and Disabled Programs (DDTP)	Customer service	2	0.07\%
Delayed Orders/Missed Appointments	Service issue	168	5.74\%
Deposits	Billing / Commercial	3	0.10\%
Disconnected In Error	Customer service	29	0.99\%
Disconnection Non Payment	Billing / Commercial	42	1.44\%
Disputed Customer of Record	Billing / Commercial		0.31\%
Early Termination Fee - ETF	Billing / Commercial	27	0.92\%
Fraud	Billing / Commercial	1	0.03\%
High Bill	Billing / Commercial	325	11.11\%
Late Payment Charge - LPC	Billing / Commercial	6	0.21\%
LL IDV Identity Verification	Billing / Commercial	3	0.10\%
LL Policy/Practices	Customer service	3	0.10\%
LL Signature/Printed Name Does Not Match/Missing	Billing / Commercial	1	0.03\%
LLB Address Error	Billing / Commercial	1	0.03\%
LLB Application Request	Billing / Commercial	89	3.04\%
LLB Approved for Discount	Billing / Commercial	49	1.68\%
LLB Discount Switched to Other Carrier	Billing / Commercial	19	0.65\%
LLB Federal Program/Equipment	Customer service	3	0.10\%
NJ Cable/Satellite TV	Non-phone issue	73	2.50\%
NJ Claims for Damages	Customer service		0.17\%
NJ Company Practice	Customer service	32	1.09\%
NJ Customer Service	Customer service	36	1.23\%
NJ Easements/Right of Way	Customer service	8	0.27\%
NJ Equipment	Service issue	30	1.03\%
NJ Inability to Serve	Service issue		0.14\%
NJ Internet Billing	Billing / Commercial	162	5.54\%
NJ Internet Service/Equipment	Non-phone issue	255	8.72\%
NJ Not Listed	Customer service	39	1.33\%
NJ Out of State Consumer	Customer service		0.10\%
NJ Property Restoration/Debris Removal	Service issue	3	0.10\%
NJ Rebates/Promotions	Billing / Commercial	8	0.27\%
NJ Surcharges/Taxes	Billing / Commercial	22	0.75\%
NJ VOIP (Voice Over Internet Protocol)	VoIP	244	8.34\%


Complaint type	Category	Count	Pct of Total
NJ Yellow Page Directory	Non-phone issue	1	$0.03 \%$
Number Portability - Wireless or Landline	Customer service	42	$1.44 \%$
Numbering Plan Area - Area Code Changes	Customer service	1	$0.03 \%$
Obscene/Threatening/Harassing Calls	Customer service	1	$0.03 \%$
Operator Services	Service issue	1	$0.03 \%$
Other Charges	Billing / Commercial	279	$9.54 \%$
Out of Service Credit - OOS	Billing / Commercial	9	$0.31 \%$
Outage	Service issue	399	$13.64 \%$
Payment Arrangements	Biiling / Commercial	12	$0.41 \%$
Payment Error	Billing / Commercial	22	$0.75 \%$
Payphone	Billing / Commercial	1	$0.03 \%$
Premise Visit Charges	Billing / Commercial	8	$0.27 \%$
Rate Design	Billing / Commercial	1	$0.03 \%$
Refusal To Serve	Customer service	12	$0.41 \%$
Robo Calls/ADAD	Customer service	11	$0.38 \%$
Safety	Service issue	22	$0.75 \%$
Slamming	Billing / Commercial	14	$0.48 \%$
Toll Dispute	Billing / Commercial	3	$0.10 \%$
Unknown	Unknown	20	$0.68 \%$
VolP (Voice over Internet Protocol)	VolP	1	$0.03 \%$
White Page Listings - Telephone Directory	Non-phone issue	1	$0.03 \%$
Wildfires	Service issue	1	$0.03 \%$
TOTAL		$\mathbf{2 9 2 5}$	$\mathbf{1 0 0 . 0 0 \%}$

$\stackrel{\bar{z}}{ }$

Table 15.3 below provides the total number of complaints received by CAB over the 20182019 period in each of these principal complaint categories. The "Service Quality issue" category, which relates most directly with Trouble Reports submitted to the carriers for service outages and other service-related problems, represents less than a quarter of the total complaints received by CAB. For AT\&T California, only 1,213 , or $21.17 \%$, of the 5,729 complaints received by CAB pertained to service outages and other telephone service related service quality issues. By comparison, over the 2018-2019 period, AT\&T California customers reported some 573,585 service outages to the carrier. For Frontier California, only 718, or $24.55 \%$, of the 2,925 complaints received by CAB during 2018-2019 pertained to telephone service related service quality issues, whereas Frontier California customers reported some 81,021 service outages to the carrier during 2018 and 2019.

Table 15.3CPUC CONSUMER AFFAIRS BRANCHPRINCIPAL CATEGORIES OF CONSUMER COMPLAINTS2018-2019				
	CAB Complaint Counts			
Complaint category	AT\&T	Pct of Total	Frontier	Pct of Total
Service Quality issue	1,213	21.17\%	718	24.55\%
Billing / Commercial Dispute	2,655	46.34\%	1,266	43.28\%
Customer service issue	755	13.18\%	346	11.83\%
VoIP Service issue	106	1.85\%	245	8.38\%
VoIP Billing issue	213	3.72\%	37	1.26\%
Non-phone issue (Cable, Internet)	755	13.18\%	208	7.11\%
Unknown	32	0.56\%	20	0.68\%
TOTALS	5,729	100.00\%	2,925	100.00\%

Less than a quarter of the total complaints received by CAB involved service outages and other service-related problems.

By far the largest number of Complaints submitted to CAB were associated with billing or other commercial interactions between the customer and the carrier. Billing and other commercial interaction issues accounted for $46.34 \%$ - nearly half - of all complaints received by CAB relating to AT\&T California, and for Frontier California, these same types of complaints represented $43.28 \%$ of all those received. Other non-billing Customer Service complaints represented $13.18 \%$ and $11.83 \%$ of all complaints received relating to AT\&T California and Frontier California, respectively. More than half of all complaints received by CAB fall into one of these two categories, neither of which has any direct counterpart with respect to service outages or other trouble tickets as reported to the carriers.

CAB also received many complaints that addressed services over which the CPUC has limited or no direct regulatory authority, such as cable TV, Internet access, and even inside wire issues.

## VoIP Services

Also included in the CAB records were complaints dealing with VoIP services; however, the vast majority of these dealt with issues other than service-related problems, such as billing and related commercial matters, delayed service installations, and other customer service issues. Nevertheless, it may still be instructive to compare VoIP service quality-related complaints with those addressing service quality issues associated with legacy services, and to present these in the context of Trouble Reports both for VoIP and for legacy services as well as the number of lines in service for each of the two carriers. Table 15.4 below compares CAB VoIP Complaints, VoIP Trouble Tickets, and VoIP subscriptions for each of the two carriers over the Phase 2 2018-2019 study period, and provides similar data for legacy services as well. Subscription counts are averaged over the two years so as to correspond with the Complaint and Trouble Ticket totals over that same period.

Table 15.4   VoIP AND LEGACY SERVICE   COMPLAINTS, TROUBLE REPORTS AND SUBSCRIPTION COUNTS   2018-2018				
	VolP		Logacy telephone service	
Complaint category	AT\&T	Frontier	AT\&T	Frontier
Service-related Complaints received by CAB	106	37	1,213	718
Service outage Trouble Reports received by carriers	400,577	63,726	573,585	81,021
Average subscriber counts 2018-2019	920,131	224,022	1,932,389	681,470
Service-related CAB Complaints per 100 lines in service (2018-19 average)	0.0115	0.0165	0.0628	0.1054
Total Out-of-Service Reports per 100 VoIP lines in service, 2018-2019	43.53	28.45	29.68	11.89
Average Out-of-Service Reports per month, per100 VoIP lines in service	1.8138	1.1854	1.2367	0.4954

Both carriers appear to be experiencing higher rates of service-related trouble conditions (i.e., out-of-service reports per month per 100 lines in service) for VoIP services than for their legacy telephone services. Notably, the CAB service-related complaints per 100 lines in service are actually lower for VoIP services than for legacy services. However, these numbers are so small, and represent little more than a minuscule fraction of all trouble reports for both categories of
service, that no meaningful conclusions as to the reasons for this seemingly inverse relationship are possible.

## The vast majority VoIP-related complaints received by CAB

 address issues other than VoIP service quality, such as billing disputes and other customer service issues.
## CAB complaints vs. carrier trouble reports for legacy services

In that regard, while the total quantity of service-related complaints submitted to CAB is an extremely small fraction of the total number of trouble reports received by both carriers, the relative number of CAB complaints has been consistently and significantly greater for Frontier California than for AT\&T California. As summarized on a monthly basis in Tables 15.5 and 15.6 below, over the 2018-2019 period, CAB received 1,213 service-related complaints from AT\&T customers, representing $0.2115 \%$ of the 573,585 service outage trouble tickets processed by AT\&T over that same period. In the case of Frontier, CAB received 718 service-related complaints, representing $0.862 \%$ of the 81,021 service outage trouble tickets processed by Frontier.

While the absolute number of complaints received by CAB are still extremely small relative to the number of service problems being reported directly to the carriers, the stark difference in the instance of such complaints as between customers of the two carriers is striking. On a relative basis, four times as many Frontier California customers saw fit to contact CAB to report service problems than did AT\&T California customers, which is generally reflective of the persistent service problems than have been plaguing Frontier over the 2018-2019 period.

> Although the absolute number of service-related complaints received by CAB is extremely small when compared with the number of complaints made directly with carriers, on a relative scale more than four times as many complaints involve legacy services provided by Frontier than those furnished by AT\&T.

Table 15.5   AT\&T CALIFORNIA   COMPARISON OF CARRIER OUT-OF-SERVICETROUBLE REPORTS VS. SERVICE QUALITY-RELATED COMPLAINTS RECEIVED BY CPUC CONSUMER AFFAIRS BRANCH 2018-2019			
Month	Out-of-Service   Trouble Reports	CAB Service Quality Complaints	CAB Complaints as Pct of Total Trouble Reports
January 2018	39,512	76	0.1923\%
February 2018	22,322	33	0.1478\%
March 2018	33,342	68	0.2039\%
April 2018	23,508	40	0.1702\%
May 2018	20,218	44	0.2176\%
June 2018	18,310	35	0.1912\%
July 2018	19,693	43	0.2184\%
August 2018	19,973	44	0.2203\%
September 2018	16,289	45	0.2763\%
October 2018	21,732	44	0.2025\%
November 2018	19,125	53	0.2771\%
December 2018	32,709	51	0.1559\%
January 2019	39,635	55	0.1388\%
February 2019	39,213	65	0.1658\%
March 2019	31,845	45	0.1413\%
April 2019	19,883	27	0.1358\%
May 2019	19,706	56	0.2842\%
June 2019	17,937	42	0.2342\%
July 2019	16,458	41	0.2491\%
August 2019	16,681	52	0.3117\%
September 2019	17,085	46	0.2692\%
October 2019	19,101	56	0.2932\%
November 2019	16,724	41	0.2452\%
December 2019	32,584	111	0.3407\%
TOTALS	573,585	1,213	0.2115\%


Table 15.6FRONTIER CALIFORNIACOMPARISON OF CARRIER OUT-OF-SERVICETROUBLE REPORTSVS. SERVICE QUALITY-RELATED COMPLAINTS RECEIVED BYCPUC CONSUMER AFFAIRS BRANCH2018-2019			
Month	Out-of-Service   Trouble Reports	CAB Service Quality Complaints	CAB Complaints as Pct of Total Trouble Reports
January 2018	4,079	36	0.8826\%
February 2018	2,276	20	0.8787\%
March 2018	4,421	29	0.6560\%
April 2018	2,931	26	0.8871\%
May 2018	2,755	23	0.8348\%
June 2018	2,298	15	0.6527\%
July 2018	2,493	19	0.7621\%
August 2018	2,620	14	0.5344\%
September 2018	2,027	24	1.1840\%
October 2018	3,864	15	0.3882\%
November 2018	3,112	8	0.2571\%
December 2018	5,047	21	0.4161\%
January 2019	5,489	40	0.7287\%
February 2019	5,710	68	1.1909\%
March 2019	4,793	62	1.2936\%
April 2019	3,457	42	1.2149\%
May 2019	3,077	33	1.0725\%
June 2019	3,077	39	1.2675\%
July 2019	2,593	48	1.8511\%
August 2019	2,687	22	0.8188\%
September 2019	2,513	27	1.0744\%
October 2019	2,597	35	1.3477\%
November 2019	2,287	21	0.9182\%
December 2019	4,818	31	0.6434\%
TOTALS	81,021	718	0.8862\%

## Conclusion

As noted earlier, the lack of customer-specific location and account data on CAB complaint data records does not allow for a direct examination of such complaints vis-à-vis the corresponding trouble ticket and its resolution by the carrier. That said, the substantially higher rate of complaints filed by Frontier customers experiencing service-related problems appears consistent with the company's difficulties over the 2018-2019 period.

CAB complaint data would be enormously more useful, going forward, if customer-specific service details, such as serving wire center, billing telephone number, and street address could be recorded along with the description of the problem being experienced by the customer. While these details may be of lesser importance for complaints that do not directly involve service outages and other service-related issues, at the very least this additional account-specific data should be collected where the complaint does involve service quality problems.

CAB should undertake to collect customer account and location data as part of all service-related complaints.

## 12 CONNECT AMERICA FUND II FUNDING AND LEGACY SERVICE QUALITY

## Principal observations and takeaways

- The data that would be necessary to support an analysis of the effects of CAF II funding on legacy circuit-switched voice telephone service is not available and, as such, we are unable to offer an assessment as to whether areas receiving CAF II support exhibit improved POTS service quality.
- Housing Units passed by the two ILECs in areas eligible for CAF II support represent a minuscule fraction of all Housing Units within each company's California operating territories.
- GO 133-C/D service quality standards and metrics are compiled at the individual wire center level, whereas eligibility for CAF II funding is determined at the individual Census Block level. Since only a small fraction of all customers served by any given wire center are located in areas receiving CAF II funding support, there is no practical means for associating CAF II support (which is focused on broadband infrastructure) and service quality for legacy circuit-switched voice services.


## CONNECT AMERICA FUND II FUNDING AND LEGACY SERVICE QUALITY

## TABLE OF CONTENTS

Introduction ..... 713
Limitations of POTS service quality data ..... 713
Conclusion ..... 722
Tables and Figures
Table 16.1: Connect America Fund II Upgraded Locations Deployed in California ..... 718
Table 16.2: AT\&T California CAF II-eligible Housing Units as Percent of Total ..... 719
Table 16.3 Frontier California CAF II-eligible Housing Units as Percent of Total ..... 721
Figure 16.1: Example of CAF II Eligibility areas for AT\&T and Frontier ..... 715
Figure 16.2: Example of Deployed CAF II Locations within Eligibility areas for AT\&T and Frontier ..... 716
Figure 16.3: California CAF II Eligibility and Deployment areas ..... 717

## Introduction

In establishing the Connect America Fund, the FCC created a funding mechanism "to be spent annually to make broadband-capable infrastructure available to as many unserved locations as possible within these areas served by price cap carriers, while sustaining voice and broad-band-capable infrastructure in high-cost areas that would not be served absent support." ${ }^{114}$ As noted, the focus of the Connect America Fund was to assure increased availability of broadband services to otherwise unserved areas. However, the focus of this study has been and remains service quality of legacy circuit-switched basic voice telephone service, which we have been referring to as "Plain Old Telephone Service" ("POTS").

As we have observed and documented at several places in this and in our Phase 1 report, when examined at the full wire center level, POTS service quality is and has been noticeably better in wire center serving areas where the ILEC (AT\&T California or Frontier California) has invested in broadband infrastructure, even though such investments have not been directed specifically at legacy services. For Phase 2, we have been asked to examine whether it is possible to determine if areas that have been recipients of Connect America Fund II ("CAF II") funding exhibit identifiably better service quality for legacy circuit-switched basic voice telephone services than is evident for otherwise similar areas that have not benefitted from CAF II-funded broadband infrastructure upgrades. For the reasons discussed below, we have determined that the data that would be necessary to support such an analysis is not available and, as such, we are unable to offer an assessment as to whether areas receiving CAF II support exhibit improved POTS service quality.


## Limitations of POTS service quality data

As reflected in our service quality analysis as presented in Chapters 4A and 4F above, the trouble report and other service quality data that has been provided by the two ILECs pursuant to GO 133-C/D and made available to ETI in both Phases 1 and 2 of this study is in all instances at the wire center level. We do not have specific location data sufficient to identify individual
114. Connect America Fund et al., WC Docket Nos. 10-90 et al., Report and Order, Rel. December 18, 2014, at para. 9, citing Connect America Fund et al.; WC Docket Nos. 10-90 et al., Report and Order and Further Notice of Proposed Rulemaking, 26 FCC Rcd 17663 (2011) (USF/ICC Transformation Order and/or FNPRM) aff'd sub nom., In re: FCC 11-161, 753 F.3d 1015 (10th Cir. 2014). at 17725, para. 158.
customers within a wire center serving area and, in particular, to identify those customers that are served by broadband infrastructure that has been constructed with CAF II funding.

Qualification for CAF II funding is based upon certain attributes that are determined at the individual Census Block level. There are 710,145 census blocks in California, ${ }^{115} 500,454$ of which are in the areas served by AT\&T California. Only 9,210 of these fall within the CAF II eligibility standards. And those 9,210 Census Blocks contain a total of 33,761 individual housing units out of the total $11,018,714$ housing units, representing only $0.31 \%$ of all housing units located in areas served by AT\&T California (see Table 16.2 below). Frontier has provided data on its operating areas at the Census Tract level. Frontier provides service in 1,991 Census Tracts containing a total of $3,414,452$ housing units. However, it is likely that some of these Census Tracts extend into areas not served by Frontier, so the total number of housing units where Frontier service is available is likely somewhat lower. There are 3,928 Census Blocks falling with Frontier operating areas containing a total of 12,812 housing units (see Table 16.3 below).

Housing Units passed by the two ILECs in areas eligible for CAF II support represent a minuscule fraction of all Housing Units within each company's California operating territories.

We have also been advised by Communications Division staff that, unlike Frontier California, which has used CAF II funding to support construction of wireline broadband infrastructure, AT\&T California's approach to broadband deployment in CAF II-funded locations has been almost exclusively through the use of fixed wireless technology. Accordingly, since AT\&T California has apparently not been using CAF II support for any wireline broadband upgrades, there is no a priori basis to expect any residual result of wireless upgrades to be an improvement in wireline service quality.

Figure 16.1 below provides an example of the relatively sparse extent of CAF II deployment relative to the total area served by a wire center, AT\&T's Caruthers, California wire center (CRTHCA11) in this instance. The area within the wire center serving area is not coincident with census block boundaries, so some census blocks fall may fall within several wire centers.

[^42]Figure 16.1. Example of CAF II Eligibility areas (shaded gray) for AT\&T (blue) and Frontier (pink). [Map was produced using GeoResults/ShareTracker.]

Figure 16.2 covers the same area as in Figure 16.1, but includes CAF II deployments as represented by the dots on the map. A "deployment" for this purpose represents a single location where some type of (wireline or fixed wireless) broadband facilities needed to serve that specific location has been constructed.


Figure 16.2. Example of Deployed CAF II Locations within Eligibility areas (shaded gray) for AT\&T (blue) and Frontier (pink). [Map was produced using GeoResults/ShareTracker.]

Figure 16.3 below shows all California CAF II-eligible areas (light blue) and specific locations where CAF II-funded broadband facilities have been deployed (dark blue):

EC NMICS AND


Figure 16.3. California CAF II Eligibility and Deployment areas [Source:
https://data.usac.org/publicreports/caf-map/ (accessed 1/13/21)]

Table 16.1 summarizes each of the two ILEC's CAF II deployment locations for each of the past several years, showing for each the number of CAF II locations that have been approved ("obligated") for upgrades, and the number of actual deployments that have been completed.

Table 16.1
CONNECT AMERICA FUND II
UPGRADED LOCATIONS DEPLOYED IN CALIFORNIA

Year	Locations Obligations	Locations Deployed	Total Support Disbursed
AT\&T CALIFORNIA			
2016	-	2,973	\$60,240,432
2017	56,616	51,953	\$120,480,864
2018	84,924	80,548	\$180,721,296
2019	113,232	163,076	\$240,961,728
TOTAL	254,772	298,550	\$602,404,320
FRONTIER CALIFORNIA			
2015	-	8,959	\$3,933,434
2016	-	10,148	\$10,538,311
2017	36,090	38,434	\$46,259,725
2018	54,135	53,492	\$84,449,286
2019	72,180	68,883	\$122,524,110
TOTAL	162,405	179,916	\$267,704,866
Source: https://data.usac.org/publicreports/caf-map/			

Table 16.2 below summarizes, for each county served by AT\&T California, the number of CAF II-eligible Census Blocks and the total number of housing units in those portions of the county served by AT\&T California, and the number of households located within AT\&T-served CAF II-eligible Census Blocks within the county. ${ }^{116}$ As is evident from this data, the number of CAF II-eligible households (homes passed) is an extreme minute fraction of the total number of households in almost every California county that AT\&T serves. Accordingly, and separate and apart from the fact that AT\&T's approach to providing broadband in these areas is via fixed wireless rather than wireline, there is no realistic basis to expect any measurable impact of CAF II funding on POTS service quality.
116. "caf2_auction_publish_block_feb2018.csv", available at https://www.fcc.gov/files/caf2auctionpublishblockfeb2018csv

Table 16.2   AT\&T CALIFORNIA   CAF II-ELIGIBLE HOUSING UNITS AS PERCENT OF TOTAL					
County	Total AT\&T Census Blocks	AT\&T CAF II Census Blocks	Total AT\&T Housing Units	AT\&T CAF II Housing Units	```Housing Units as Pct of Total```
ALAMEDA	24,886	125	613,870	245	0.04\%
ALPINE	78	2	1,037	39	3.76\%
AMADOR	1,007	11	13,777	39	0.28\%
BUTTE	7,012	320	99,860	1,046	1.05\%
CALAVERAS	2,213	47	25,538	288	1.13\%
COLUSA	309	1	565	1	0.18\%
CONTRA COSTA	19,277	177	436,916	428	0.10\%
EL DORADO	5,807	38	98,731	282	0.29\%
FRESNO	17,723	259	297,180	749	0.25\%
GLENN	2,739	43	11,232	71	0.63\%
HUMBOLDT	6,480	15	54,275	70	0.13\%
IMPERIAL	6,572	224	51,903	356	0.69\%
INYO	214	16	552	62	11.23\%
KERN	22,565	493	251,101	964	0.38\%
KINGS	5,605	114	40,456	457	1.13\%
LAKE	4,959	445	37,890	2,109	5.57\%
LASSEN	105	27	174	85	48.85\%
LOS ANGELES	69,334	204	2,402,156	327	0.01\%
MADERA	3,941	102	36,067	274	0.76\%
MARIN	4,277	65	103,526	157	0.15\%
MARIPOSA	1,201	43	4,129	104	2.52\%
MENDOCINO	5,774	215	38,802	732	1.89\%
MERCED	6,346	175	78,045	862	1.10\%
MONTEREY	10,442	264	151,927	734	0.48\%
NAPA	3,104	155	59,267	1,542	2.60\%
NEVADA	4,842	370	58,349	1,783	3.06\%
ORANGE	31,467	145	924,002	424	0.05\%
PLACER	6,570	25	101,568	179	0.18\%
PLUMAS	2,441	255	9,514	838	8.81\%
RIVERSIDE	8,056	19	229,881	64	0.03\%
SACRAMENTO	16,853	155	469,051	654	0.14\%
SAN BENITO	2,413	80	18,433	381	2.07\%
SAN BERNARDINO	5,253	41	143,121	84	0.06\%
SAN DIEGO	45,514	481	1,259,421	1,469	0.12\%
SAN FRANCISCO	7,996	32	411,564	51	0.01\%
SAN JOAQUIN	11,929	207	203,767	1,128	0.55\%
SAN LUIS OBISPO	10,853	278	119,817	1,155	0.96\%
SAN MATEO	9,891	96	292,658	357	0.12\%
SANTA BARBARA	29	3	93	5	5.38\%
SANTA CLARA	20,193	179	636,776	487	0.08\%
SANTA CRUZ	5,215	69	111,151	321	0.29\%
SHASTA	6,357	279	69,122	1,413	2.04\%
SIERRA	1,582	165	2,457	616	25.07\%
SISKIYOU	4,447	561	17,931	1,804	10.06\%
SOLANO	9,867	531	153,322	1,277	0.83\%
SONOMA	10,595	449	218,699	1,826	0.83\%
STANISLAUS	8,561	98	181,509	579	0.32\%
SUTTER	2,890	3	34,615	2	0.01\%
TEHAMA	3,871	430	27,768	2,140	7.71\%
TRINITY	372	17	974	48	4.93\%
TULARE	11,950	216	132,584	695	0.52\%
TUOLUMNE	3,890	132	32,397	705	2.18\%
VENTURA	7,548	59	144,147	126	0.09\%
YOLO	3,676	243	74,635	1,109	1.49\%
YUBA	3,363	12	30,412	18	0.06\%
TOTAL	500,454	9,210	11,018,714	33,761	0.31\%

Frontier California has provided wire center mapping at the Census Tract level. As a result, we do not have corresponding Census Block population and housing unit count data for Frontier California. We do have CAF II Census Block data for Frontier. Table 16.3 provides data for Frontier California corresponding to that shown for AT\&T California in Figure 16.2. As with AT\&T, the number of housing units located in CAF II-eligible areas is a tiny fraction of all housing units passed by Frontier.

Note that the CAF II location deployment counts shown in Table 16.1 appear to be substantially greater than the number of housing units in CAF II-eligible Census Blocks as shown in Tables 16.2 and 16.3 based upon US Census Bureau population and housing data. We have been unable to identify any explanation for this apparent disparity. However, even if the figures in Table 16.1 are determined to be more accurate, they still do not cover more than a small fraction of total wire center serving areas.

> GO 133-C/D service quality standards and metrics are compiled at the individual wire center level, whereas eligibility for CAF II funding is determined at the individual Census Block level. Since only a small fraction of all customers served by any given wire center are located in areas receiving CAF II funding support, there is no practical means for associating CAF II support (which is focused on broadband infrastructure) and service quality for legacy circuit-switched voice services.

Table 16.3   FRONTIER CALIFORNIA   CAF II-ELIGIBLE HOUSING UNITS AS PERCENT OF TOTAL					
County	Total Frontier Census Tracts	Frontier CAF II Census Blocks	Total Frontier Housing Units	Frontier CAF II Housing Units	Housing Units as Pct of Total
Fresno	27	314	45,036	644	1.43\%
Humboldt	5	96	9,915	277	2.79\%
Imperial	3	35	4,329	94	2.17\%
Inyo	6	134	9,478	315	3.32\%
Kern	30	638	61,014	1,221	2.00\%
Kings	9	88	9,278	327	3.52\%
Los Angeles	845	200	1,285,897	329	0.03\%
Marin	11	38	21,861	223	1.02\%
Mendocino	5	78	9,929	189	1.90\%
Merced	9	124	10,390	722	6.95\%
Mono	4	95	17,724	497	2.80\%
Monterey	4	95	10,484	563	5.37\%
Orange	118	23	202,279	46	0.02\%
Placer	8	32	20,399	599	2.94\%
Riverside	320	191	611,305	536	0.09\%
San Bernardino	290	681	575,579	1,625	0.28\%
San Joaquin	28	31	44,295	376	0.85\%
Santa Barbara	92	285	162,005	1,341	0.83\%
Santa Clara	43	107	72,348	990	1.37\%
Sonoma	6	87	13,487	200	1.48\%
Stanislaus	3	16	6,129	215	3.51\%
Trinity	5	184	9,767	597	6.11\%
Tulare	18	212	35,663	505	1.42\%
Ventura	100	73	163,598	52	0.03\%
Yolo	2	71	2,263	329	14.54\%
TOTAL	1,991	3,928	3,414,452	12,812	0.38\%

NOTE: Some Census Tracts may extend beyond Frontier serving areas. As a result, the total number of housing units shown here for Frontier operating areas is likely somewhat overstated.

## Conclusion

For the reasons discussed above, we are not able to provide an assessment as to the impact of CAF II funding for wireline or fixed wireless broadband deployment occurring in only a small portion of individual wire centers upon overall legacy circuit-switched voice telephone service quality as measured at the full wire center level.

ECONOMICS AND

## 7 CONCLUSIONS AND RECOMMENDATIONS

## TABLE OF CONTENTS

Managing the transition from legacy to current technology services ..... 724
Conclusions ..... 725
Recomendations ..... 728

## Managing the transition from legacy to current technology services

As we noted in our Phase 1 report, a substantial source of the persistent service quality shortcomings that have plagued legacy POTS services over the past decade has resulted from a failure to develop and manage the migration from legacy circuit-switched wireline technology to state-of-the-art IP-based and wireless services. Numerous technology transitions have occurred in the telecommunications industry over the past century or more, but the current one is unique in a number of critically important respects.

Past transitions, such as from manual switchboards to dial, from step-by-step to crossbar central office switches, from electromechanical to electronic switches, from analog to digital switching, from baseband twisted-pair copper to frequency-division multiplexing to digital timedivision multiplexing, from rotary dial to touch-tone, and from copper to fiber optics, have all occurred through a process that took place in the background, one that was largely invisible to the consumer and which, in most cases, involved little affirmative customer decisions or actions.

This process for technology transition was successful largely because the regulatory regime within which it occurred was technology-blind - i.e., the regulatory model remained the same under the previous and the new technology. But with the onset of competition and deregulation that began in the 1980s, this is no longer the case. When a customer migrates from a legacy circuit-switched service to an IP service such as VoIP or to wireless, the regulatory regime that had overseen the legacy service ceases to apply. The deregulation that applies to post-transition services presents the service provider with a radically changed set of financial incentives that essentially compel it, acting in the best interests of its shareholders as it has a fiduciary duty to do, to shift management and financial resources to these potentially far more profitable nonregulated services. Both AT\&T and Frontier have been doing exactly that. They have directed their capital investment away from legacy serivces and over to wireless, to broadband and, most recently, to content.

The scope of regulation should apply with respect to the set of functionalities that is deemed essential and in need of some level of regulatory protection, and not with respect to the particular technology that is involved. Thus, if basic voice and some minimal level of Internet access service is deemed essential, these services should be provided in the most efficient manner in each situation, whether by wireline or wireless, or by circuit- or packet-switching technology. If reliable access to emergency services (E911) and connectivity that can remain active in the event of a local power interruption are considered essential minimum service requirements from a public policy standpoint, efficient solutions can be developed under any of the technology platforms or market models.

Fixing this problem is, at bottom, a political matter, and we do not pretend to offer a political solution. However, what is clear is that the existing arrangement is not producing anything close to an optimal result, and needs to be reexamined and revised at a fundamental level.

## Conclusions

Following is a brief summary of the principal conclusions resulting from Economics and Technology, Inc.'s ("ETI's") Phase 2 examination of the network infrastructures and quality of service of California's two principal Incumbent Local Exchange Carriers ("ILECs"), AT\&T California and Frontier California for the 2018-2019 study period.

- Ongoing deterioration of ILEC service quality. The quality of AT\&T and Frontier voice services, which had been steadily deteriorating throughout the 2010-2017 Phase 1 study period, has become decidedly worse over the 2018-2019 Phase 2 period; the frequency of service outages has been increasing, as has their average duration.
- Persistent disinvestment. The persistent disinvestment, payments of dividends in excess of earnings, and annual depreciation accruals that exceeded gross additions that had characterized the Phase 1 study period have persisted into Phase 2; moreover, the infrastructure investments that both ILECs did make appeared aimed primarily at nonregulated broadband service upgrades rather than at improving legacy service plant.
- Further decline in the number of POTS customers. By the end of 2019, 79.1\% of the legacy service access lines that were being served by AT\&T California at the beginning of 2010 had discontinued their service. Frontier had lost $52.3 \%$ of the legacy service customers it had on April 1, 2016, the date on which it took over the California ILEC from Verizon. Both companies have, for all practical purposes, stopped marketing legacy circuit-switched Plain Old Telephone Service ("POTS"), focusing instead on broadband service as their strategy for maintaining and growing their revenue stream while allowing POTS service quality to continue to degrade. This lack of interest in POTS, coupled with the inconsequential financial penalties imposed by GO 133-D for failure to meet minimal service quality performance metrics, would seem to explain why both ILECs have allowed POTS service quality to erode further. The potential revenue from migrating customers to broadband voice/Internet and video bundles, together with the costs the ILECs avoid by ignoring needed legacy service improvements, easily outweighs whatever financial penalties the Commission may impose for violating minimum service quality standards.
- A focus upon broadband, not POTS. Investments that were made during 2018-2019 continue to be primarily directed toward supporting new broadband services that bundle high-speed Internet access, Voice over Internet Protocol ("VoIP"), and Video. These broadband-focused upgrades have nevertheless conferred some benefit in improving POTS service quality in locations where such investments have been made. POTS service quality is decidedly better in such locations, but even in these locations, POTS service quality performance under most General Order 133-D metrics deteriorated even faster after 2017.
- By the end of 2019, AT\&T California had become an even smaller part of the overall AT\&T corporate organization that it had been two years earlier. Over the 2010-2017 period, AT\&T California's parent AT\&T Inc. had experienced significant growth in its overall
gross revenues, rising $29.2 \%$ from $\$ 124.3$-billion in 2010 to $\$ 181.2$-billion in 2019. The primary sources of AT\&T's revenue growth have come from wireless services, where the number of AT\&T Mobility connections nationwide grew by $73.9 \%$, from 95.4 -million in 2010 to 165.9-million in 2019, ${ }^{117}$ and from several key acquisitions, including DirecTV and Time Warner. AT\&T California revenues have been moving in the opposite direction. falling from $\$ 9.70$-billion in 2010 to $\$ 6.63$-billion by the end of 2019. AT\&T California's share of total AT\&T Inc. revenues has fallen by an even greater amount, from $7.80 \%$ in 2010 to $3.66 \%$ in in 2019. The parent company's willingness to allocate capital to the Califronia ILEC has dimished accordingly.
- Failure to adapt network infrastructure to withstand varying weather and environmental conditions. The strong correlation between significant adverse weather conditions and the incidence of service outages that we had observed in the greater Los Angeles area in our Phase 1 study has now been confirmed to be occurring statewide. This pattern suggests that the networks of AT\&T and Frontier are not as robust as they need to be to withstand weather and climate conditions in the state. The occurrence of extreme weather events in California certainly can be anticipated to a certain degree and should thus be incorporated into the companies' engineering, design and construction, and maintenance practices. These networks must be able to withstand all types of inclement weather and provide safe and reliable service to customers.
- Effect of wildfires upon service quality and infrastructure investment. Unlike for weather, we found no identifiable correlation between wildfire events and elevated service outage rates. Service outages are heavily impacted by rainfall, which tends to occur in the late fall and winter, whereas wildfires are most frequent in the summer, when rainfall is minimal. Restoration of landline telephone service, or even reporting of service outages themselves, is not likely to be of high priority in the aftermath of a destructive wildfire, so even if service has been interrupted, individual service outages may not be reported. We had also been asked to examine whether the ILECs had directed infrastructure investment to areas that had been heavily impacted by wildfires. However, no such investment pattern has been present for AT\&T California, and only a minimal correlation could be identified for Frontier California.
- Investment focus on higher income communities. Both AT\&T California and Frontier California appear to have prioritized their investments in fiber optic feeder and distribution facilities and in other broadband infrastructure to favor higher income communities. And since areas that have received such upgrades tend to perform better with respect to the various GO 133-D service quality metrics, the result is better service quality for these communities as well.
- Increased focus on areas most heavily impacted by competition. Both carriers continued to experience a persistent and massive erosion in demand for POTS lines over the 2018-2019

117. AT\&T Inc. Annual Reports, 2010, 2019 .
study period. The greatest drop-offs - in some locations of as much as $90 \%$ or more - have occurred primarily in the more densely populated urban and suburban areas where customers have a wider choice of available providers and services. Notably, it is the areas with the lowest POTS drop-off rates that have experienced the steepest deteriorations in service quality. AT\&T and Frontier appear to have focused most of their attention in those communities where competition and the potential for loss of customers is greatest. Where POTS demand erosion has been greatest, the availability of broadband has offset some of the revenue losses.

- Financial Capability. AT\&T Inc. has the financial resources to maintain and upgrade its wireline network in California, but has been pulling capital out of the state rather than putting new capital into its network here. Frontier has a strong interest in pursuing such upgrades, but lacks the financial capacity to make the necessary investments. Moreover, Frontier has suffered a financial meltdown since its 2016 purchase of the Verizon ILECs in California, Texas and Florida. Having grossly overpaid for these assets, the company has been unable to achieve an adequate and sustainable revenue stream, and was forced to seek Chapter 11 bankruptcy protection in April 2020. Even if it is successful in emerging from bankruptcy, the company will have little ongoing ability to raise capital needed to maintain and upgrade its network.
- VoIP service quality. VoIP is the principal alternative to legacy POTS for those who want to retain a wireline connection. AT\&T VoIP service experiences a slightly higher rate of service outages than AT\&T legacy services. Unlike circuit-switched services, VoIP is dependent upon locally-provided power, battery backup, and complex customer premises equipment that is not generally required for legacy circuit-switched services. The seemingly higher incidence of VoIP service outages vis- $\grave{a}$-vis POTS could well be the result of customer premises conditions that are unique to VoIP. Finally, the so-called "digital divide" -- an issue whose importance has increased as a result of the COVID-19 crisis - raises the potential for the loss of high quality wireline voice services in rural and low-income populations that have not been targeted for broadband upgrades. With the sunset of $\S 710$ that went into effect as of the beginning of 2020, a comprehensive regulatory approach that embraces all providers of VoIP type services should clearly be a top priority.
- CPUC Consumer Affairs Branch (CAB) complaints. The number of consumer complaints received by the CAB amounts to a minuscule fraction of the total number of trouble reports received and processed by the two ILECs. Moreover, the majority of CAB compalints relate mainly to billing and other business relationship issues, not to service outages. CAB collects geo-coded customer location information, but this does not include customer of record/account data that is contained in the ILECs' trouble report records. Consequently, CAB complaint records cannot be directly linked to or correlated with carrier trouble tickets. That said, complaints relating to Frontier service that CAB received in 2018-2019 were substantially greater on a relative basis than those pertaining to AT\&T, which is consistent with the rapidly deterioring service quality that Frontier experienced during these two years.


## Recommendations

The overarching result of this Phase 2 examination is that the service quality failures that we had identified and documented in Phase 1 have actually become even more serious. Accordingly, we have expanded, revised and reiterated the specific recommendations that we had offered in our Phas 1 report:

- Recommendation 1: Given the enormous rate at which customers have been discontinuing legacy circuit-switched POTS-type services over the past decade, the Commission should reevaluate the role that regulation is to play with respect to legacy as well as current technology services going forward. If assuring universal availability of high quality public switched network access is to remain a central focus of regulatory policy, then advanced services, including VoIP and broadband, should be included within the scope of this policy review. There seems little reason to single out legacy services as the sole focus of service quality regulation.
- Recommendation 2: With $\S 710$ no longer in effect, GO 133 should be extended to apply to all wireline voice services whether furnished by ILECs or other large service providers.
- Recommendation 3: Expand the financial penalties for carriers that fail to meet the minimum GO 133-D service quality standards both with respect to the types of shortcomings that will be assessed and the financial magnitude of the fines or other penalties that will be imposed. We have seen no specific evidence that investments made in lieu of fines as permitted in GO 133-D $\S 7$ (a) would not have been made anyway, and (b) have resulted in specific remedial measures ained at overcoming the service quality shortcomings. The practical result of these alternative investments is simply to negate the effectiveness of the financial penalty itself, and as such the program should be discontinued.
- Recommendation 4: In an effectively competitive market, persistently poor service quality is expected to drive customers to take their business elsewhere. The continuing erosion of both ILECs' legacy customer base that persisted throughout Phase 1 nad that has continued through Phase 2 indicates that competition for and alternatives to legacy POTS-type services has been growing and "cord-cutting" has become even more pervasive. Yet even when faced with growing competition, both ILECs' POTS service quality has been on the decline. Whether due to inertia, the non-availability of cost-effective alternatives, or a perceived need to retain a telephone service that does not require local power, customers who retain their legacy service appear to be more captive to the ILEC than those able to switch. Where competition is limited or not present, continued regulatory monitoring and enforcement of minimal service quality standards remains necessary, and financial penalties imposed due to an ILEC's failure to meet service quality standards should be sufficiently high so as to have the same financial consequences as would poor service quality under competitive market conditions.
- Recommendation 5: The GO 133-D maximum Customer Trouble Report Rates of 6\%, 8\% or $10 \%$ (depending upon wire center size) of switched access lines per month remain far too generous, and failure rates as high as these can hardly constitute acceptable service quality. The carriers have had little difficulty in meeting these standards, and they should be revised downward.
- Recommendation 6: Fines imposed by GO 133-D §9 are currently applied for aggregate service quality shortfalls calculated on a companywide basis. Instead, these fines and other financial penalties should be imposed with respect to individual wire center service quality performance, and should escalate based upon the extent to which the carrier falls short of meeting the service quality standards for each such wire center. Frontier's practice of administratively consolidating groups of individual wire centers may hae the effect of masking those with particularly poor performance and in so doing potentially escaping the imposition of a penalty. Frontier should not be permitted to continue reporting its results for consolidated "reporting units" rather than separately for each individual wire center. AT\&T has not engaged in a similar type of administrative consolidation.
- Recommendation 7: Unless carriers can offer technically valid explanations as to how and why smaller wire centers experience the poorest service quality, a uniform set of minimum GO 133-D standards should be applied to each individual wire center.
- Recommendation 8: The GO 133-D fines should vary based upon the extent of a carrier's failure to meet any service quality standard, rising in magnitude as the extent of the shortfall increases and/or persists for an extended period of time.
- Recommendation 9: The Commission should retain its requirement that URF carriers maintain their Part 32 Uniform System of Accounts ("USOA") regulatory accounting records and continue to submit annual ARMIS-type financial reports using the same accounts and account definitions that they have been required by the CPUC to maintain notwithstanding the FCC's decision to discontinue ARMIS reporting requirements after 2007. If an ILEC wants to substitute GAAP reporting for Part 32 USOA, it should be required, first, to submit a formal application for the right to make this substitution and, in that application, demonstrate that GAAP-type reporting will still meet the Commission's need for financial data sufficient to permit the type of year-over-year monitoring of investment, retirements, depreciation accruals, write-offs and write-downs, operating results, debt and debt service payments, and other financial data necessary for the Commission to carry out its regulatory mission. If the CPUC authorizes the ILEC's use of GAAP, the ILEC should be required to retroactively restate its USOA reports consistent with GAAP for a minimum of five (5) prior years. The financial reporting requirement should be extended to also include wire center level accounting data, similar to those that ETI had obtained through multiple data requests in the course of both Phase 1 and Phase 2 of this study. The ILECs should be required to submit these reports separately for each physically distinct wire center rather than for the groups of wire centers that Frontier had administratively
consolidated for reporting purposes. The carriers should be required to submit these reports to the Communications Division on a semi-annual basis.
- Recommendation 10: The Commission should establish a process to proactively examine the alternatives that would be available to maintain adequate service to Frontier California customers in the event that the parent company no longer has the financial resources to provide safe and reliable services in California.

EC
NO
TE


## ECONOMICS AND

 TECHNOLOGY, INC.ONE WASHINGTON MALL, $7^{\text {th }}$ FLOOR BOSTON, MASSACHUSETTS 02108


[^0]:    1. "State Level Subscriptions," vts_state_table_1-1.xlsx, available at https://www.fcc.gov/voice-telephone-services-report (accessed 08.20.20)
[^1]:    8. FCC Industry Analysis Division Office of Economics and Analytics, Voice Telephone Services: Status as of December 31, 2018, re. March 2020, Supplemental Table 1. Voice Subscriptions (in Thousands) - California, available at https://www.fcc.gov/voice-telephone-services-report (accessed 6/9/21).
    9. The average number of working lines reportable under GO 133-C/D (which includes all ILEC and CLEC voice access lines) decreased from 11.48-million in 2010 to 6.15 -million in 2017. CPUC staff compilation of carrierreported data.
[^2]:    10. Again serving to underscore the ILECs' persistent lack of interest in their legacy services, principal ILEC competitors - cable MSOs and Commercial Mobile Radio Service (CMRS) carriers - typically provide customer support and are able to address most service outages on a $24 / 7$ basis without taking weekends and holidays off. While the CPUC has given the ILECs a "pass" in this regard, competitive marketplace forces have generally failed to compel the ILECs to offer repair services comparable to what is routinely available from rival providers.
[^3]:    11. Some 2010-2017 trend lines differ slightly from those presented in the Phase 1 Report due to certain revisions and corrections that we have made to the earlier methodology for calculating "adjusted" results - those reflecting the GO $133 \S 3.4(\mathrm{~b})$ "credit" for Sunday and Holiday time from the "actual" elapsed duration of service outages.
[^4]:    12. AT\&T furnished several tabulations of its California wire centers, with differing numbers of wire centers, over the course of the study ( 615 in its response to DR-01A,Data Request 3, Attachment 4; 624 in response to DR-03A, Data Requests 1,2, and 6, Corrected Attachment 1; 622 in DR-03A, Corrected Attachment 2; 626 in DR03A, Corrected Attachment 2, DR-03A, Corrected Attachment 4 ). The GO 133-C/D service quality data covers only 612 wire centers.
[^5]:    13. CPUC 2005 SBC/AT\&T merger proceeding, A.05-02-027, Declaration of Dennis W. Carlton and Hal S. Sider, Joint Applicants’ Exhibit 1, at para. 41, citing AT\&T 4Q04 Earnings Conference Call, January 20, 2005, p. 8; paras. 46, 48-49. As we explained in our Phase 1 Report, in a "harvesting strategy," the firm ceases active marketing of and organizational support for those services that it considers to be on the decline and no longer of strategic importance, relying instead upon customer inertia to maintain its revenue stream, albeit decreasing, for as long as possible. That AT\&T has allowed its POTS service quality to deteriorate over the past decade even in the face of putative "competition" suggests that the carrier is and has been pursuing the very same kind of "harvesting" approach for POTS that its predecessor CLEC operation had employed back in the mid- to late-2000s. In fact, and as shown in Table 4A.10, concurrently with the deterioration in service quality that was the impetus for this Study, AT\&T has effected a succession of even larger rate increases for the very services that it now seeks to exit than its CLEC predecessor had done back in the mid-2000s.
[^6]:    15. For example, the Alhambra wire center in Los Angeles County (ALHBCA01) was assigned to the "Yes" category with respect to Fiber Deployment, to the "Over 20,000 Lines" category with respect to Wire Center Size; to the $70 \%-80 \%$ category with respect to Access Line Loss, to the " $1800+$ per Square Mile" category with respect to Population Density, to the San Gabriel Technical Field Services District, and to the $\$ 55,000-\$ 66,999$ Median Household Income category.
[^7]:    16. AT\&T response to DR-01
    17. AT\&T Response to DR-12-A-10.
[^8]:    20. See, generally, Figures 4.1 through 4.4 above. These were based upon data obtained from FCC Industry Analysis Division Office of Economics and Analytics, Voice Telephone Services: Status as of December 31, 2018, re. March 2020, Supplemental Table 1. Voice Subscriptions (in Thousands) - California, available at https://www.fcc.gov/voice-telephone-services-report (accessed 6/9/21).
[^9]:    21. United States Census Bureau, https.//www2.census.gov/geo/pdfs/education/CensusTracts.pdf, accessed 9/6/18).
[^10]:    22. AT\&T California response to DR 11-A-1 dated May 15, 2020. In that response, AT\&T further advised that "This is the only update to the narrative response provided to Data Request 1, Question 1 on May 11, 2018." On that basis, we have assumed that the specific assignments of individual wire centers to each of the five now-known-as-AFO districts is the same as it had been in Phase 1.
[^11]:    24. Verizon California GO-133-C Quarterly Report, 1Q15.
    25. Frontier California responses to CD Data Requests 11-F-07, 13-F-02.
    26. Frontier California response to CD Data Requests 11-F-07, 13-F-01.
[^12]:    34. See, e.g., Verizon, "Verizon FiOS - See the Light," available at http://thevillagecondos.com/Projects/VerizonFIOS/MDUPortfolio.pdf (accessed 1/24/19).
[^13]:    36. GO 133-C/D, at §3.3(c).
[^14]:    38. Frontier Response to DR-02F.
[^15]:    39. This is undoubtedly an overly simplified description. AT\&T Inc., the parent company, is the ultimate owner of several hundred domestic and foreign affiliates. Most inter-affiliate financial transactions and relationships are opaque, both as to their precise nature and their magnitude.
    40. AT\&T has recently dropped its use of the $U$-verse brand, and now refers to its Internet and video services as "AT\&T Internet" and "AT\&T TV."
[^16]:    42. AT\&T California Response to CD Data Request 12-A-10.
    43. AT\&T Inc. Annual Reports, 2010, 2019 .
[^17]:    44. $47 \mathrm{CFR} \S 32.5001$ defines "Basic Area Revenues" to "include revenue derived from the provision of the following: (1) Basic area message services such as flat rate services and measured services. Included is revenue derived from non-optional extended area services. Also included is revenue derived from the billed or guaranteed portion of semi-public services. (2) Optional extended area service. (3) Cellular mobile telecommunications systems connected to the public switched network placed between mobile units and other stations within the mobile service area. (4) General radio telecommunications systems connected to the public switched network placed between mobile units and other stations within the mobile service area, as well as revenue from mobile radio paging, mobile dispatching, and signaling services. (b) Revenue derived from charges for nonpublished number or additional and boldfaced listings in the alphabetical section of the company's telephone directories shall be included in account 5230, Directory revenue. (c) Revenue from private mobile telephone services which do not have access to the public switched network shall be included in Account 5200, Miscellaneous revenue.
    45. 47 CFR § 32.5081 End user revenue: (a) This account shall contain federally and state tariffed monthly flat rate charge assessed upon end users. (b) Subsidiary record categories shall be maintained in order that the company may separately report amounts related to federal and state tariffed charges.
[^18]:    47. PU Code $\S 871.5(\mathrm{a})$ caps LifeLine rates at one-half of the 1 FR rate for flat-rate basic residential service.
[^19]:    48. AT\&T California Reponse to CD Data Request 12-A-4 dated August 7, 2020. The FCC Decision 17-15 to which AT\&T refers is the February 24, 2017 Report and Order in WC Docket No. 14-130 ("Comprehensive Review of the Part 32 Uniform System of Accounts") and CC Docket No. 80-286 ("Jurisdictional Separations and Referral to the Federal-State Joint Board").
[^20]:    51. To facilitate its regulatory mission, the FCC in 1935 established a "Uniform System of Accounts" ("USOA") as detailed in Part 31 of its Rules ( 47 CFR $\S 31$ ). In 1986, the USOA was revised and expanded, and Part 31 was superseded entirely by a new Part 32 ( $47 \mathrm{CFR} \S 32$ ). The FCC also adopted a reporting protocol known as the
[^21]:    "Automated Reporting Management Information System" ("ARMIS"). In 2007 the FCC decided that it would forbear from requiring ARMIS reporting by ILECs after 2007. Petition of AT\&T Inc. for Forbearance Under 47 U.S.C. § 160(c) From Enforcement of Certain of the Commission's ARMIS Reporting Requirements; Petition of Qwest Corporation for Forbearance from Enforcement of the Commission's ARMIS and 492A Reporting Requirements Pursuant to 47 U.S.C. § 160(c), WC Docket No. 07-139 et al. Memorandum Opinion and Order and Notice of Proposed Rulemaking, Rel. September 6, 2008, FCC 08-203: However, Part 32 USOA requirements remained in effect, and state commissions were not precluded from continuing to require such reporting. The CPUC has required that URF ILECs, including AT\&T California and Verizon (now Frontier) California continue to submit ARMIS-type reports on an annual basis. See, GO 104-A, D. 93-02-019.

[^22]:    O

[^23]:    58. "Frontier Communications to Acquire Verizon's Wireline Operations in California, Florida and Texas, Doubling Frontier’s Size and Driving Shareholder Value," Press Release, February 5, 2015 http://investor.frontier.com/releasedetail.cfm?ReleaseID $=895055$ [accessed on July 15, 2015].
[^24]:    61. Frontier 2016 Annual Report and Proxy Statement, at p. F-11.
    62. Frontier 2016 Annual Report, at F-15.
    63. Frontier California 2016 ARMIS Form 43-02, at Table B-1.
    64. Frontier California 2017 ARMIS Form 43-02, at Table B-1.
    65. Frontier California 2019 ARMIS Form 43-02, at Table B-1.
    66. Id.
    67. Id., at F-5.
    68. Frontier 2019 Form 10-K, at F-5.
[^25]:    72. Moody's Investors Service, November 2nd, 2017: "Moody's downgrades Frontier to B3, outlook remains negative."
[^26]:    73. I/M/O Joint Application of Frontier Communications Corporation, Frontier Communications of America, Inc. (U 5429 C), Verizon California Inc. (U 1002 C), Verizon Long Distance, LLC (U 5732 C, and Newco West Holdings LLC for Approval of Transfer of Control Over Verizon California Inc. and Related Approval of Transfer of Assets and Certifications, A.15-03-005, filed March 18, 2015, Exhibit 1.
[^27]:    74. PU Code $\S 871.5(\mathrm{a})$ caps LifeLine rates at one-half of the 1 FR rate for flat-rate basic residential service.
[^28]:    75. See Frontier California's response to CD DR 12-F-10. Frontier states that it """ Response to CD DR 12-F10(d).
[^29]:    79. I/M/O Joint Application of Frontier Communications Corporation, Frontier Communications of America, Inc. (U5429C), Verizon California, Inc. (U1002C), Verizon Long Distance LLC (U5732C), and Newco West Holdings LLC for Approval of Transfer of Control Over Verizon California, Inc. and Related Approval of Transfer of Assets and Certifications, A.15-03-005, Direct Testimony of John M. Jureller, Executive Vice President and Chief Financial Officer, Frontier Communications Corporation, May 11, 2015, at 30 ("The Company estimates $\$ 700$ million in annualized corporate consolidated cost efficiencies for the pro forma combined company primarily through costs that do not transfer to Frontier at the closing of the transaction."), 25 ("While noting that [Standard \& Poor's] eventual rating will depend on the specific funding for the Transaction, the agency explained that its current ratings affirmation reflects a view that 'the acquisition offers some business benefits and significant potential cost synergies' arising to a great extent from avoided expenses previously allocated by Verizon to the acquired assets.'). Citations omitted.
[^30]:    81. D.16-08-021 (R.11-12-001), Adopted Aug. 18, 2016; Effective Aug. 18, 2016; Except Section 9 on fines, which is effective Jan. 1, 2017.
    82. CPUC Resolution T-17631, issued November 8, 2018; CPUC Resolution T-17652, issued May 30, 2019; CPUC Resolution T-17731, issued March 4, 2021.
    83. GO 133-D, §9.7.
    84. See Resolutions T-17631, Resolution T-17652, Resolution T-17731.
[^31]:    91. Frontier California Response to CD Data Request 11-F-**.
    92. AT\&T California Responses to CD Data Request 11-A-3, 01-A-3.
    93. AT\&T California Response to CD Data Request 12-A-10..
[^32]:    

[^33]:    94．Yamane，Taro，Statistics：An Introductory Analysis（New York：Harper \＆Row，1964），at 435－438．

[^34]:    95. AT\&T California Response to CD Data Request 11-A-25; Frontier California Response to CD Data Request 13-F-03(d).
[^35]:    96. Stats. 2012, Ch 733, Sec 3. (SB 1161) Effective January 1, 2013. Repealed as of January 1, 2020, by its own provisions.
[^36]:    97. Frontier response to CD DR 13-F, cover letter dated August 7, 2020.
[^37]:    98. According toAT\&T California's Form 477 submissiions to the FCC, as of December 2019, approximately of VoIP customers were being served via FTTP facilities. See Table 14.1 below.
[^38]:    101. Unlike legacy circuit-switched services where several conventional analog handsets can be connected to the same access line and as individual "extensions" can be connected to the same phone call, only a single VoIP handset can be used with a typical residential VoIP service. As a result, most residential VoIP services are configured to utilize an Analog Telephone Adapter ("ATA") that is connected to the customer's existing inside (copper) wire for use with one or more conventional analog telephone handsets.
[^39]:    wire center level VoIP subscriptions as of the end of each year from 2014 through 2019. In order to calculate TRPH based only upon annual data, we needed to calculate the average number of lines in service over the full year, which required that we start our analysis with 2015, using the average of end-of-year 2014 and 2015.

[^40]:    records originated between April 1, 2016 and December 31, 2019. See "Attachment 11-F-25-Revised VoIP Ticket Datas.xlsx" and "Att. 13-F-4 2019 VoIP Trouble Tickets (CONFIDENTIAL).xlsx". 255 different wire centers are included in this dataset. We have determined, however, that the 75 wire centers with the largest numbers of trouble tickets account for more than $99 \%$ of all VoIP trouble tickets over the April 2016 through December 2019 period. For trouble tickets identifying a wire center for which no VoIP service count is available, we have ignored it.

[^41]:    113. https://www.cpuc.ca.gov/cab/
[^42]:    115. https://www2.census.gov/geo/pdfs/reference/guidestloc/ca_gslcg.pdf (accessed 1/20/21).
